An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins

[Display omitted] •In the presence of IP6 arrestin-2 and arrestin-3 form different oligomers.•IP6 activates arrestin-3, but does not activate arrestin-2.•An eight-residue insertion in arrestin-2 controls differential oligomerization. G protein coupled receptors signal through G proteins or arrestins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2021-02, Vol.433 (4), p.166790-166790, Article 166790
Hauptverfasser: Chen, Qiuyan, Zhuo, Ya, Sharma, Pankaj, Perez, Ivette, Francis, Derek J., Chakravarthy, Srinivas, Vishnivetskiy, Sergey A., Berndt, Sandra, Hanson, Susan M., Zhan, Xuanzhi, Brooks, Evan K., Altenbach, Christian, Hubbell, Wayne L., Klug, Candice S., Iverson, T.M., Gurevich, Vsevolod V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166790
container_issue 4
container_start_page 166790
container_title Journal of molecular biology
container_volume 433
creator Chen, Qiuyan
Zhuo, Ya
Sharma, Pankaj
Perez, Ivette
Francis, Derek J.
Chakravarthy, Srinivas
Vishnivetskiy, Sergey A.
Berndt, Sandra
Hanson, Susan M.
Zhan, Xuanzhi
Brooks, Evan K.
Altenbach, Christian
Hubbell, Wayne L.
Klug, Candice S.
Iverson, T.M.
Gurevich, Vsevolod V.
description [Display omitted] •In the presence of IP6 arrestin-2 and arrestin-3 form different oligomers.•IP6 activates arrestin-3, but does not activate arrestin-2.•An eight-residue insertion in arrestin-2 controls differential oligomerization. G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.
doi_str_mv 10.1016/j.jmb.2020.166790
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7870585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283620307154</els_id><sourcerecordid>2474844133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-4ed5fd2b3ebad87c038660c57bd5a6e8bf9088a86e77ab776de8a329b9559b1e3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7uzoB_AiOXrpMel0_jSC0AzrKiyuoJ5DOqmeydCdrEnPLPrpzdDrohdPRahXryrvh9ArSjaUUPH2sDlM_aYmdXkLIVvyBK0oUW2lBFNP0YqQuq5qxcQFusz5QAjhrFHP0QVjTEnO6ArFLuArv9vPuJt8iLiz3uGvsJsgzHgbw5zimPHt6HdxguR_mdnHgE1w-EuCAVICd5YNMU1LKw543gOe7yP-HEN18vloRtwVYZ59yC_Qs8GMGV4-1DX6_uHq2_ZjdXN7_Wnb3VSWUzlXDTg-uLpn0BunpCVMCUEsl73jRoDqh5YoZZQAKU0vpXCgDKvbvuW87SmwNXq_-N4d-wmcLd9JZtR3yU8m_dTReP1vJ_i93sWTlkoSrngxePNgkOKPYzleTz5bGEcTIB6zrhvZqKahJco1oovUpphzieVxDSX6DEofdAGlz6D0AqrMvP77vseJP2SK4N0igJLSyUPS2XoIFpxPYGftov-P_W-gBKZU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474844133</pqid></control><display><type>article</type><title>An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chen, Qiuyan ; Zhuo, Ya ; Sharma, Pankaj ; Perez, Ivette ; Francis, Derek J. ; Chakravarthy, Srinivas ; Vishnivetskiy, Sergey A. ; Berndt, Sandra ; Hanson, Susan M. ; Zhan, Xuanzhi ; Brooks, Evan K. ; Altenbach, Christian ; Hubbell, Wayne L. ; Klug, Candice S. ; Iverson, T.M. ; Gurevich, Vsevolod V.</creator><creatorcontrib>Chen, Qiuyan ; Zhuo, Ya ; Sharma, Pankaj ; Perez, Ivette ; Francis, Derek J. ; Chakravarthy, Srinivas ; Vishnivetskiy, Sergey A. ; Berndt, Sandra ; Hanson, Susan M. ; Zhan, Xuanzhi ; Brooks, Evan K. ; Altenbach, Christian ; Hubbell, Wayne L. ; Klug, Candice S. ; Iverson, T.M. ; Gurevich, Vsevolod V.</creatorcontrib><description>[Display omitted] •In the presence of IP6 arrestin-2 and arrestin-3 form different oligomers.•IP6 activates arrestin-3, but does not activate arrestin-2.•An eight-residue insertion in arrestin-2 controls differential oligomerization. G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.</description><identifier>ISSN: 0022-2836</identifier><identifier>ISSN: 1089-8638</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2020.166790</identifier><identifier>PMID: 33387531</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Amino Acids - chemistry ; Arrestins - chemistry ; Arrestins - metabolism ; Binding Sites ; Humans ; IP6 ; isoforms ; Models, Molecular ; oligomer ; Phytic Acid - chemistry ; Protein Binding ; Protein Conformation ; Protein Isoforms ; Protein Multimerization ; signaling protein ; Solutions ; Spectrum Analysis ; structure</subject><ispartof>Journal of molecular biology, 2021-02, Vol.433 (4), p.166790-166790, Article 166790</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-4ed5fd2b3ebad87c038660c57bd5a6e8bf9088a86e77ab776de8a329b9559b1e3</citedby><cites>FETCH-LOGICAL-c517t-4ed5fd2b3ebad87c038660c57bd5a6e8bf9088a86e77ab776de8a329b9559b1e3</cites><orcidid>0000-0002-3068-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2020.166790$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33387531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Zhuo, Ya</creatorcontrib><creatorcontrib>Sharma, Pankaj</creatorcontrib><creatorcontrib>Perez, Ivette</creatorcontrib><creatorcontrib>Francis, Derek J.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Vishnivetskiy, Sergey A.</creatorcontrib><creatorcontrib>Berndt, Sandra</creatorcontrib><creatorcontrib>Hanson, Susan M.</creatorcontrib><creatorcontrib>Zhan, Xuanzhi</creatorcontrib><creatorcontrib>Brooks, Evan K.</creatorcontrib><creatorcontrib>Altenbach, Christian</creatorcontrib><creatorcontrib>Hubbell, Wayne L.</creatorcontrib><creatorcontrib>Klug, Candice S.</creatorcontrib><creatorcontrib>Iverson, T.M.</creatorcontrib><creatorcontrib>Gurevich, Vsevolod V.</creatorcontrib><title>An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>[Display omitted] •In the presence of IP6 arrestin-2 and arrestin-3 form different oligomers.•IP6 activates arrestin-3, but does not activate arrestin-2.•An eight-residue insertion in arrestin-2 controls differential oligomerization. G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.</description><subject>Amino Acids - chemistry</subject><subject>Arrestins - chemistry</subject><subject>Arrestins - metabolism</subject><subject>Binding Sites</subject><subject>Humans</subject><subject>IP6</subject><subject>isoforms</subject><subject>Models, Molecular</subject><subject>oligomer</subject><subject>Phytic Acid - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Isoforms</subject><subject>Protein Multimerization</subject><subject>signaling protein</subject><subject>Solutions</subject><subject>Spectrum Analysis</subject><subject>structure</subject><issn>0022-2836</issn><issn>1089-8638</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-LFDEQxYMo7uzoB_AiOXrpMel0_jSC0AzrKiyuoJ5DOqmeydCdrEnPLPrpzdDrohdPRahXryrvh9ArSjaUUPH2sDlM_aYmdXkLIVvyBK0oUW2lBFNP0YqQuq5qxcQFusz5QAjhrFHP0QVjTEnO6ArFLuArv9vPuJt8iLiz3uGvsJsgzHgbw5zimPHt6HdxguR_mdnHgE1w-EuCAVICd5YNMU1LKw543gOe7yP-HEN18vloRtwVYZ59yC_Qs8GMGV4-1DX6_uHq2_ZjdXN7_Wnb3VSWUzlXDTg-uLpn0BunpCVMCUEsl73jRoDqh5YoZZQAKU0vpXCgDKvbvuW87SmwNXq_-N4d-wmcLd9JZtR3yU8m_dTReP1vJ_i93sWTlkoSrngxePNgkOKPYzleTz5bGEcTIB6zrhvZqKahJco1oovUpphzieVxDSX6DEofdAGlz6D0AqrMvP77vseJP2SK4N0igJLSyUPS2XoIFpxPYGftov-P_W-gBKZU</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Chen, Qiuyan</creator><creator>Zhuo, Ya</creator><creator>Sharma, Pankaj</creator><creator>Perez, Ivette</creator><creator>Francis, Derek J.</creator><creator>Chakravarthy, Srinivas</creator><creator>Vishnivetskiy, Sergey A.</creator><creator>Berndt, Sandra</creator><creator>Hanson, Susan M.</creator><creator>Zhan, Xuanzhi</creator><creator>Brooks, Evan K.</creator><creator>Altenbach, Christian</creator><creator>Hubbell, Wayne L.</creator><creator>Klug, Candice S.</creator><creator>Iverson, T.M.</creator><creator>Gurevich, Vsevolod V.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3068-3792</orcidid></search><sort><creationdate>20210219</creationdate><title>An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins</title><author>Chen, Qiuyan ; Zhuo, Ya ; Sharma, Pankaj ; Perez, Ivette ; Francis, Derek J. ; Chakravarthy, Srinivas ; Vishnivetskiy, Sergey A. ; Berndt, Sandra ; Hanson, Susan M. ; Zhan, Xuanzhi ; Brooks, Evan K. ; Altenbach, Christian ; Hubbell, Wayne L. ; Klug, Candice S. ; Iverson, T.M. ; Gurevich, Vsevolod V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-4ed5fd2b3ebad87c038660c57bd5a6e8bf9088a86e77ab776de8a329b9559b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acids - chemistry</topic><topic>Arrestins - chemistry</topic><topic>Arrestins - metabolism</topic><topic>Binding Sites</topic><topic>Humans</topic><topic>IP6</topic><topic>isoforms</topic><topic>Models, Molecular</topic><topic>oligomer</topic><topic>Phytic Acid - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Isoforms</topic><topic>Protein Multimerization</topic><topic>signaling protein</topic><topic>Solutions</topic><topic>Spectrum Analysis</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Zhuo, Ya</creatorcontrib><creatorcontrib>Sharma, Pankaj</creatorcontrib><creatorcontrib>Perez, Ivette</creatorcontrib><creatorcontrib>Francis, Derek J.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Vishnivetskiy, Sergey A.</creatorcontrib><creatorcontrib>Berndt, Sandra</creatorcontrib><creatorcontrib>Hanson, Susan M.</creatorcontrib><creatorcontrib>Zhan, Xuanzhi</creatorcontrib><creatorcontrib>Brooks, Evan K.</creatorcontrib><creatorcontrib>Altenbach, Christian</creatorcontrib><creatorcontrib>Hubbell, Wayne L.</creatorcontrib><creatorcontrib>Klug, Candice S.</creatorcontrib><creatorcontrib>Iverson, T.M.</creatorcontrib><creatorcontrib>Gurevich, Vsevolod V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiuyan</au><au>Zhuo, Ya</au><au>Sharma, Pankaj</au><au>Perez, Ivette</au><au>Francis, Derek J.</au><au>Chakravarthy, Srinivas</au><au>Vishnivetskiy, Sergey A.</au><au>Berndt, Sandra</au><au>Hanson, Susan M.</au><au>Zhan, Xuanzhi</au><au>Brooks, Evan K.</au><au>Altenbach, Christian</au><au>Hubbell, Wayne L.</au><au>Klug, Candice S.</au><au>Iverson, T.M.</au><au>Gurevich, Vsevolod V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>433</volume><issue>4</issue><spage>166790</spage><epage>166790</epage><pages>166790-166790</pages><artnum>166790</artnum><issn>0022-2836</issn><issn>1089-8638</issn><eissn>1089-8638</eissn><abstract>[Display omitted] •In the presence of IP6 arrestin-2 and arrestin-3 form different oligomers.•IP6 activates arrestin-3, but does not activate arrestin-2.•An eight-residue insertion in arrestin-2 controls differential oligomerization. G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>33387531</pmid><doi>10.1016/j.jmb.2020.166790</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3068-3792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2021-02, Vol.433 (4), p.166790-166790, Article 166790
issn 0022-2836
1089-8638
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7870585
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acids - chemistry
Arrestins - chemistry
Arrestins - metabolism
Binding Sites
Humans
IP6
isoforms
Models, Molecular
oligomer
Phytic Acid - chemistry
Protein Binding
Protein Conformation
Protein Isoforms
Protein Multimerization
signaling protein
Solutions
Spectrum Analysis
structure
title An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Eight%20Amino%20Acid%20Segment%20Controls%20Oligomerization%20and%20Preferred%20Conformation%20of%20the%20two%20Non-visual%20Arrestins&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Chen,%20Qiuyan&rft.date=2021-02-19&rft.volume=433&rft.issue=4&rft.spage=166790&rft.epage=166790&rft.pages=166790-166790&rft.artnum=166790&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2020.166790&rft_dat=%3Cproquest_pubme%3E2474844133%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474844133&rft_id=info:pmid/33387531&rft_els_id=S0022283620307154&rfr_iscdi=true