An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model

This work applies a novel geometric criterion for nonlinear autonomous differential equations developed by Lu and Lu (NARWA 36:20–43, 2017) to a nonlinear SEIVS epidemic model with temporary immunity and achieves its threshold dynamics. Specifically, global-stability problems for the SEIVS model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2021, Vol.67 (1-2), p.707-730
Hauptverfasser: Wang, Xingyu, Liu, Zhijun, Wang, Lianwen, Guo, Caihong, Xiang, Huili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 1-2
container_start_page 707
container_title Journal of applied mathematics & computing
container_volume 67
creator Wang, Xingyu
Liu, Zhijun
Wang, Lianwen
Guo, Caihong
Xiang, Huili
description This work applies a novel geometric criterion for nonlinear autonomous differential equations developed by Lu and Lu (NARWA 36:20–43, 2017) to a nonlinear SEIVS epidemic model with temporary immunity and achieves its threshold dynamics. Specifically, global-stability problems for the SEIVS model of Cai and Li (AMM 33:2919–2926, 2009) are effectively solved. The corresponding optimal control system with vaccination, awareness campaigns and treatment is further established and four different control strategies are compared by numerical simulations to contain hepatitis B. It is concluded that joint implementation of these measures can minimize the numbers of exposed and infectious individuals in the shortest time, so it is the most efficient strategy to curb the hepatitis B epidemic. Moreover, vaccination for newborns plays the core role and maintains the high level of population immunity.
doi_str_mv 10.1007/s12190-020-01487-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7869433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571081817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-da239a599ce2a8ddabc84452c70c2be0b649b023e6b96f3febf0dda8b7e718673</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhidGY2v1D7gwJG7cjPI5wMakaao2adJFW7cEmDNXGgZGmNuk_16ut60fiy4IhPc5L-fwdt1bgj8SjOWnSijRuMe0LcKV7MWz7pCoQfQUK_G8nYVWvWgXB92rWm8wHqTG-mV3wJhQnAz0sEvHCdllicHbNeSE8oQsSvkWItpAnmEtwSNfwgplJ68ZbWJ2NvZ1tS7EsN6hpWQXYa4PtSmGBLagy9Oz75cIljDC3EzmPEJ83b2YbKzw5n4_6q6_nF6dfOvPL76enRyf955LvvajpUxbobUHatU4WucV54J6iT11gN3AtcOUweD0MLEJ3IQbpZwE2T5AsqPu89532boZRg9pLTaapYTZljuTbTD_Kin8MJt8a6QaNGesGXy4Nyj55xbqauZQPcRoE-RtNZQrPeBBEdLQ9_-hN3lbUhvPUCEJVkSRXUd0T_mSay0wPTZDsNnFafZxmhan-R2nEa3o3d9jPJY85NcAtgdqk9IGyp-3n7D9BeSKrUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571081817</pqid></control><display><type>article</type><title>An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Xingyu ; Liu, Zhijun ; Wang, Lianwen ; Guo, Caihong ; Xiang, Huili</creator><creatorcontrib>Wang, Xingyu ; Liu, Zhijun ; Wang, Lianwen ; Guo, Caihong ; Xiang, Huili</creatorcontrib><description>This work applies a novel geometric criterion for nonlinear autonomous differential equations developed by Lu and Lu (NARWA 36:20–43, 2017) to a nonlinear SEIVS epidemic model with temporary immunity and achieves its threshold dynamics. Specifically, global-stability problems for the SEIVS model of Cai and Li (AMM 33:2919–2926, 2009) are effectively solved. The corresponding optimal control system with vaccination, awareness campaigns and treatment is further established and four different control strategies are compared by numerical simulations to contain hepatitis B. It is concluded that joint implementation of these measures can minimize the numbers of exposed and infectious individuals in the shortest time, so it is the most efficient strategy to curb the hepatitis B epidemic. Moreover, vaccination for newborns plays the core role and maintains the high level of population immunity.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-020-01487-5</identifier><identifier>PMID: 33584162</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Computational Mathematics and Numerical Analysis ; Differential equations ; Differential geometry ; Dynamic stability ; Epidemics ; Hepatitis ; Hepatitis B ; Immunity ; Mathematical and Computational Engineering ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Optimal control ; Original Research ; Stability criteria ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2021, Vol.67 (1-2), p.707-730</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2021</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-da239a599ce2a8ddabc84452c70c2be0b649b023e6b96f3febf0dda8b7e718673</citedby><cites>FETCH-LOGICAL-c474t-da239a599ce2a8ddabc84452c70c2be0b649b023e6b96f3febf0dda8b7e718673</cites><orcidid>0000-0002-9914-9627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-020-01487-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-020-01487-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33584162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Liu, Zhijun</creatorcontrib><creatorcontrib>Wang, Lianwen</creatorcontrib><creatorcontrib>Guo, Caihong</creatorcontrib><creatorcontrib>Xiang, Huili</creatorcontrib><title>An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><addtitle>J Appl Math Comput</addtitle><description>This work applies a novel geometric criterion for nonlinear autonomous differential equations developed by Lu and Lu (NARWA 36:20–43, 2017) to a nonlinear SEIVS epidemic model with temporary immunity and achieves its threshold dynamics. Specifically, global-stability problems for the SEIVS model of Cai and Li (AMM 33:2919–2926, 2009) are effectively solved. The corresponding optimal control system with vaccination, awareness campaigns and treatment is further established and four different control strategies are compared by numerical simulations to contain hepatitis B. It is concluded that joint implementation of these measures can minimize the numbers of exposed and infectious individuals in the shortest time, so it is the most efficient strategy to curb the hepatitis B epidemic. Moreover, vaccination for newborns plays the core role and maintains the high level of population immunity.</description><subject>Applied mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Dynamic stability</subject><subject>Epidemics</subject><subject>Hepatitis</subject><subject>Hepatitis B</subject><subject>Immunity</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Optimal control</subject><subject>Original Research</subject><subject>Stability criteria</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFSEUhidGY2v1D7gwJG7cjPI5wMakaao2adJFW7cEmDNXGgZGmNuk_16ut60fiy4IhPc5L-fwdt1bgj8SjOWnSijRuMe0LcKV7MWz7pCoQfQUK_G8nYVWvWgXB92rWm8wHqTG-mV3wJhQnAz0sEvHCdllicHbNeSE8oQsSvkWItpAnmEtwSNfwgplJ68ZbWJ2NvZ1tS7EsN6hpWQXYa4PtSmGBLagy9Oz75cIljDC3EzmPEJ83b2YbKzw5n4_6q6_nF6dfOvPL76enRyf955LvvajpUxbobUHatU4WucV54J6iT11gN3AtcOUweD0MLEJ3IQbpZwE2T5AsqPu89532boZRg9pLTaapYTZljuTbTD_Kin8MJt8a6QaNGesGXy4Nyj55xbqauZQPcRoE-RtNZQrPeBBEdLQ9_-hN3lbUhvPUCEJVkSRXUd0T_mSay0wPTZDsNnFafZxmhan-R2nEa3o3d9jPJY85NcAtgdqk9IGyp-3n7D9BeSKrUY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Xingyu</creator><creator>Liu, Zhijun</creator><creator>Wang, Lianwen</creator><creator>Guo, Caihong</creator><creator>Xiang, Huili</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9914-9627</orcidid></search><sort><creationdate>2021</creationdate><title>An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model</title><author>Wang, Xingyu ; Liu, Zhijun ; Wang, Lianwen ; Guo, Caihong ; Xiang, Huili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-da239a599ce2a8ddabc84452c70c2be0b649b023e6b96f3febf0dda8b7e718673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Dynamic stability</topic><topic>Epidemics</topic><topic>Hepatitis</topic><topic>Hepatitis B</topic><topic>Immunity</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Optimal control</topic><topic>Original Research</topic><topic>Stability criteria</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Liu, Zhijun</creatorcontrib><creatorcontrib>Wang, Lianwen</creatorcontrib><creatorcontrib>Guo, Caihong</creatorcontrib><creatorcontrib>Xiang, Huili</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xingyu</au><au>Liu, Zhijun</au><au>Wang, Lianwen</au><au>Guo, Caihong</au><au>Xiang, Huili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><addtitle>J Appl Math Comput</addtitle><date>2021</date><risdate>2021</risdate><volume>67</volume><issue>1-2</issue><spage>707</spage><epage>730</epage><pages>707-730</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>This work applies a novel geometric criterion for nonlinear autonomous differential equations developed by Lu and Lu (NARWA 36:20–43, 2017) to a nonlinear SEIVS epidemic model with temporary immunity and achieves its threshold dynamics. Specifically, global-stability problems for the SEIVS model of Cai and Li (AMM 33:2919–2926, 2009) are effectively solved. The corresponding optimal control system with vaccination, awareness campaigns and treatment is further established and four different control strategies are compared by numerical simulations to contain hepatitis B. It is concluded that joint implementation of these measures can minimize the numbers of exposed and infectious individuals in the shortest time, so it is the most efficient strategy to curb the hepatitis B epidemic. Moreover, vaccination for newborns plays the core role and maintains the high level of population immunity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33584162</pmid><doi>10.1007/s12190-020-01487-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9914-9627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2021, Vol.67 (1-2), p.707-730
issn 1598-5865
1865-2085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7869433
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Computational Mathematics and Numerical Analysis
Differential equations
Differential geometry
Dynamic stability
Epidemics
Hepatitis
Hepatitis B
Immunity
Mathematical and Computational Engineering
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Optimal control
Original Research
Stability criteria
Theory of Computation
title An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20a%20novel%20geometric%20criterion%20to%20global-stability%20problems%20of%20a%20nonlinear%20SEIVS%20epidemic%20model&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Wang,%20Xingyu&rft.date=2021&rft.volume=67&rft.issue=1-2&rft.spage=707&rft.epage=730&rft.pages=707-730&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-020-01487-5&rft_dat=%3Cproquest_pubme%3E2571081817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571081817&rft_id=info:pmid/33584162&rfr_iscdi=true