G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2021-02, Vol.184 (3), p.655-674.e27
Hauptverfasser: Prentzell, Mirja Tamara, Rehbein, Ulrike, Cadena Sandoval, Marti, De Meulemeester, Ann-Sofie, Baumeister, Ralf, Brohée, Laura, Berdel, Bianca, Bockwoldt, Mathias, Carroll, Bernadette, Chowdhury, Suvagata Roy, von Deimling, Andreas, Demetriades, Constantinos, Figlia, Gianluca, de Araujo, Mariana Eca Guimaraes, Heberle, Alexander M., Heiland, Ines, Holzwarth, Birgit, Huber, Lukas A., Jaworski, Jacek, Kedra, Magdalena, Kern, Katharina, Kopach, Andrii, Korolchuk, Viktor I., van 't Land-Kuper, Ineke, Macias, Matylda, Nellist, Mark, Palm, Wilhelm, Pusch, Stefan, Ramos Pittol, Jose Miguel, Reil, Michèle, Reintjes, Anja, Reuter, Friederike, Sampson, Julian R., Scheldeman, Chloë, Siekierska, Aleksandra, Stefan, Eduard, Teleman, Aurelio A., Thomas, Laura E., Torres-Quesada, Omar, Trump, Saskia, West, Hannah D., de Witte, Peter, Woltering, Sandra, Yordanov, Teodor E., Zmorzynska, Justyna, Opitz, Christiane A., Thedieck, Kathrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674.e27
container_issue 3
container_start_page 655
container_title Cell
container_volume 184
creator Prentzell, Mirja Tamara
Rehbein, Ulrike
Cadena Sandoval, Marti
De Meulemeester, Ann-Sofie
Baumeister, Ralf
Brohée, Laura
Berdel, Bianca
Bockwoldt, Mathias
Carroll, Bernadette
Chowdhury, Suvagata Roy
von Deimling, Andreas
Demetriades, Constantinos
Figlia, Gianluca
de Araujo, Mariana Eca Guimaraes
Heberle, Alexander M.
Heiland, Ines
Holzwarth, Birgit
Huber, Lukas A.
Jaworski, Jacek
Kedra, Magdalena
Kern, Katharina
Kopach, Andrii
Korolchuk, Viktor I.
van 't Land-Kuper, Ineke
Macias, Matylda
Nellist, Mark
Palm, Wilhelm
Pusch, Stefan
Ramos Pittol, Jose Miguel
Reil, Michèle
Reintjes, Anja
Reuter, Friederike
Sampson, Julian R.
Scheldeman, Chloë
Siekierska, Aleksandra
Stefan, Eduard
Teleman, Aurelio A.
Thomas, Laura E.
Torres-Quesada, Omar
Trump, Saskia
West, Hannah D.
de Witte, Peter
Woltering, Sandra
Yordanov, Teodor E.
Zmorzynska, Justyna
Opitz, Christiane A.
Thedieck, Kathrin
description Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling. [Display omitted] •G3BPs act non-redundantly in the TSC-mTORC1 signaling axis•G3BPs reside at the lysosomal surface and inhibit mTORC1•The TSC complex requires G3BPs as its lysosomal tether•G3BP1 deficiency phenocopies TSC complex loss in cancer cells and neurons Distinct from their contributions to stress granules, G3BPs regulate mTORC1 activity through spatial control of the TSC complex.
doi_str_mv 10.1016/j.cell.2020.12.024
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420316949</els_id><sourcerecordid>2481657602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-ab10d6317144564ab15615c87c3de18b4c81c8c32ca5a6983064adb87b8f211e3</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS0EoqHwBTiAj1w2eLz-txJCgghSpEpFEM6W1ztJHe2uF3tT0W-Po7QVvXCxZfu9n2fmEfIa2BIYqPf7pce-X3LGywVfMi6ekAWwRlcCNH9KFow1vDJKizPyIuc9Y8xIKZ-Ts7oWjVYAC7Je15-_ZzrjfI2JloVufq6oj8PU4x86R9rf5pjjgJm6saP5ME0Jc6bD5urHCmgOu9H1Ydy9JM-2rs_46m4_J7--ftmsLqrLq_W31afLygvdzJVrgXWqBg1CSCXKUSqQ3mhfdwimFd6AN77m3kmnGlOzIupao1uz5QBYn5OPJ-50aAfsPI5zcr2dUhhcurXRBfv4ZQzXdhdvrDbKmIYVwNsTwKeQ5zDaMSZngbFaWw5G6qJ4d_dFir8PmGc7hHyctBsxHrLlwoCSWjFepPweFnNOuH0oBJg9ZmT39ui0x4wscFsyKqY3_7bwYLkPpQg-nARYBnkTMNnsA44eu5DQz7aL4X_8v8nqoLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481657602</pqid></control><display><type>article</type><title>G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Prentzell, Mirja Tamara ; Rehbein, Ulrike ; Cadena Sandoval, Marti ; De Meulemeester, Ann-Sofie ; Baumeister, Ralf ; Brohée, Laura ; Berdel, Bianca ; Bockwoldt, Mathias ; Carroll, Bernadette ; Chowdhury, Suvagata Roy ; von Deimling, Andreas ; Demetriades, Constantinos ; Figlia, Gianluca ; de Araujo, Mariana Eca Guimaraes ; Heberle, Alexander M. ; Heiland, Ines ; Holzwarth, Birgit ; Huber, Lukas A. ; Jaworski, Jacek ; Kedra, Magdalena ; Kern, Katharina ; Kopach, Andrii ; Korolchuk, Viktor I. ; van 't Land-Kuper, Ineke ; Macias, Matylda ; Nellist, Mark ; Palm, Wilhelm ; Pusch, Stefan ; Ramos Pittol, Jose Miguel ; Reil, Michèle ; Reintjes, Anja ; Reuter, Friederike ; Sampson, Julian R. ; Scheldeman, Chloë ; Siekierska, Aleksandra ; Stefan, Eduard ; Teleman, Aurelio A. ; Thomas, Laura E. ; Torres-Quesada, Omar ; Trump, Saskia ; West, Hannah D. ; de Witte, Peter ; Woltering, Sandra ; Yordanov, Teodor E. ; Zmorzynska, Justyna ; Opitz, Christiane A. ; Thedieck, Kathrin</creator><creatorcontrib>Prentzell, Mirja Tamara ; Rehbein, Ulrike ; Cadena Sandoval, Marti ; De Meulemeester, Ann-Sofie ; Baumeister, Ralf ; Brohée, Laura ; Berdel, Bianca ; Bockwoldt, Mathias ; Carroll, Bernadette ; Chowdhury, Suvagata Roy ; von Deimling, Andreas ; Demetriades, Constantinos ; Figlia, Gianluca ; de Araujo, Mariana Eca Guimaraes ; Heberle, Alexander M. ; Heiland, Ines ; Holzwarth, Birgit ; Huber, Lukas A. ; Jaworski, Jacek ; Kedra, Magdalena ; Kern, Katharina ; Kopach, Andrii ; Korolchuk, Viktor I. ; van 't Land-Kuper, Ineke ; Macias, Matylda ; Nellist, Mark ; Palm, Wilhelm ; Pusch, Stefan ; Ramos Pittol, Jose Miguel ; Reil, Michèle ; Reintjes, Anja ; Reuter, Friederike ; Sampson, Julian R. ; Scheldeman, Chloë ; Siekierska, Aleksandra ; Stefan, Eduard ; Teleman, Aurelio A. ; Thomas, Laura E. ; Torres-Quesada, Omar ; Trump, Saskia ; West, Hannah D. ; de Witte, Peter ; Woltering, Sandra ; Yordanov, Teodor E. ; Zmorzynska, Justyna ; Opitz, Christiane A. ; Thedieck, Kathrin ; Genomics England Research Consortium</creatorcontrib><description>Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling. [Display omitted] •G3BPs act non-redundantly in the TSC-mTORC1 signaling axis•G3BPs reside at the lysosomal surface and inhibit mTORC1•The TSC complex requires G3BPs as its lysosomal tether•G3BP1 deficiency phenocopies TSC complex loss in cancer cells and neurons Distinct from their contributions to stress granules, G3BPs regulate mTORC1 activity through spatial control of the TSC complex.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.12.024</identifier><identifier>PMID: 33497611</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Amino Acid Sequence ; Animals ; Basale medisinske, odontologiske og veterinærmedisinske fag: 710 ; Basic medical, dental and veterinary science disciplines: 710 ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; cancer ; Cell Line, Tumor ; Cell Movement - drug effects ; Cytoplasmic Granules - drug effects ; Cytoplasmic Granules - metabolism ; DNA Helicases - chemistry ; DNA Helicases - metabolism ; Evolution, Molecular ; Female ; G3BP1 ; G3BP2 ; Humans ; Insulin - pharmacology ; Lysosomal Membrane Proteins - metabolism ; lysosome ; Lysosomes - drug effects ; Lysosomes - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Medical disciplines: 700 ; Medical molecular biology: 711 ; Medisinsk molekylærbiologi: 711 ; Medisinske Fag: 700 ; metabolism ; mTORC1 ; neuronal function ; Neurons - drug effects ; Neurons - metabolism ; Phenotype ; Poly-ADP-Ribose Binding Proteins - chemistry ; Poly-ADP-Ribose Binding Proteins - metabolism ; Rats ; Rats, Wistar ; RNA Helicases - chemistry ; RNA Helicases - metabolism ; RNA Recognition Motif Proteins - chemistry ; RNA Recognition Motif Proteins - metabolism ; RNA-Binding Proteins - metabolism ; Signal Transduction - drug effects ; stress granule ; TSC complex ; Tuberous Sclerosis - metabolism ; VDP ; Zebrafish - metabolism</subject><ispartof>Cell, 2021-02, Vol.184 (3), p.655-674.e27</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-ab10d6317144564ab15615c87c3de18b4c81c8c32ca5a6983064adb87b8f211e3</citedby><cites>FETCH-LOGICAL-c479t-ab10d6317144564ab15615c87c3de18b4c81c8c32ca5a6983064adb87b8f211e3</cites><orcidid>0000-0001-8489-8732 ; 0000-0002-8621-5285 ; 0000-0001-7813-7726 ; 0000-0002-2902-2348 ; 0000-0003-3394-3075 ; 0000-0003-4801-0673 ; 0000-0002-4646-9969 ; 0000-0003-1116-2120 ; 0000-0002-9104-4222 ; 0000-0001-8490-5816 ; 0000-0001-8760-7865 ; 0000-0002-8223-0023 ; 0000-0002-9989-9567 ; 0000-0003-3753-5394 ; 0000-0001-6414-8707 ; 0000-0001-8689-8488 ; 0000-0002-3407-4249 ; 0000-0002-6104-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420316949$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33497611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prentzell, Mirja Tamara</creatorcontrib><creatorcontrib>Rehbein, Ulrike</creatorcontrib><creatorcontrib>Cadena Sandoval, Marti</creatorcontrib><creatorcontrib>De Meulemeester, Ann-Sofie</creatorcontrib><creatorcontrib>Baumeister, Ralf</creatorcontrib><creatorcontrib>Brohée, Laura</creatorcontrib><creatorcontrib>Berdel, Bianca</creatorcontrib><creatorcontrib>Bockwoldt, Mathias</creatorcontrib><creatorcontrib>Carroll, Bernadette</creatorcontrib><creatorcontrib>Chowdhury, Suvagata Roy</creatorcontrib><creatorcontrib>von Deimling, Andreas</creatorcontrib><creatorcontrib>Demetriades, Constantinos</creatorcontrib><creatorcontrib>Figlia, Gianluca</creatorcontrib><creatorcontrib>de Araujo, Mariana Eca Guimaraes</creatorcontrib><creatorcontrib>Heberle, Alexander M.</creatorcontrib><creatorcontrib>Heiland, Ines</creatorcontrib><creatorcontrib>Holzwarth, Birgit</creatorcontrib><creatorcontrib>Huber, Lukas A.</creatorcontrib><creatorcontrib>Jaworski, Jacek</creatorcontrib><creatorcontrib>Kedra, Magdalena</creatorcontrib><creatorcontrib>Kern, Katharina</creatorcontrib><creatorcontrib>Kopach, Andrii</creatorcontrib><creatorcontrib>Korolchuk, Viktor I.</creatorcontrib><creatorcontrib>van 't Land-Kuper, Ineke</creatorcontrib><creatorcontrib>Macias, Matylda</creatorcontrib><creatorcontrib>Nellist, Mark</creatorcontrib><creatorcontrib>Palm, Wilhelm</creatorcontrib><creatorcontrib>Pusch, Stefan</creatorcontrib><creatorcontrib>Ramos Pittol, Jose Miguel</creatorcontrib><creatorcontrib>Reil, Michèle</creatorcontrib><creatorcontrib>Reintjes, Anja</creatorcontrib><creatorcontrib>Reuter, Friederike</creatorcontrib><creatorcontrib>Sampson, Julian R.</creatorcontrib><creatorcontrib>Scheldeman, Chloë</creatorcontrib><creatorcontrib>Siekierska, Aleksandra</creatorcontrib><creatorcontrib>Stefan, Eduard</creatorcontrib><creatorcontrib>Teleman, Aurelio A.</creatorcontrib><creatorcontrib>Thomas, Laura E.</creatorcontrib><creatorcontrib>Torres-Quesada, Omar</creatorcontrib><creatorcontrib>Trump, Saskia</creatorcontrib><creatorcontrib>West, Hannah D.</creatorcontrib><creatorcontrib>de Witte, Peter</creatorcontrib><creatorcontrib>Woltering, Sandra</creatorcontrib><creatorcontrib>Yordanov, Teodor E.</creatorcontrib><creatorcontrib>Zmorzynska, Justyna</creatorcontrib><creatorcontrib>Opitz, Christiane A.</creatorcontrib><creatorcontrib>Thedieck, Kathrin</creatorcontrib><creatorcontrib>Genomics England Research Consortium</creatorcontrib><title>G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling</title><title>Cell</title><addtitle>Cell</addtitle><description>Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling. [Display omitted] •G3BPs act non-redundantly in the TSC-mTORC1 signaling axis•G3BPs reside at the lysosomal surface and inhibit mTORC1•The TSC complex requires G3BPs as its lysosomal tether•G3BP1 deficiency phenocopies TSC complex loss in cancer cells and neurons Distinct from their contributions to stress granules, G3BPs regulate mTORC1 activity through spatial control of the TSC complex.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</subject><subject>Basic medical, dental and veterinary science disciplines: 710</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cytoplasmic Granules - drug effects</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - metabolism</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>G3BP1</subject><subject>G3BP2</subject><subject>Humans</subject><subject>Insulin - pharmacology</subject><subject>Lysosomal Membrane Proteins - metabolism</subject><subject>lysosome</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Medical disciplines: 700</subject><subject>Medical molecular biology: 711</subject><subject>Medisinsk molekylærbiologi: 711</subject><subject>Medisinske Fag: 700</subject><subject>metabolism</subject><subject>mTORC1</subject><subject>neuronal function</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phenotype</subject><subject>Poly-ADP-Ribose Binding Proteins - chemistry</subject><subject>Poly-ADP-Ribose Binding Proteins - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - metabolism</subject><subject>RNA Recognition Motif Proteins - chemistry</subject><subject>RNA Recognition Motif Proteins - metabolism</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>stress granule</subject><subject>TSC complex</subject><subject>Tuberous Sclerosis - metabolism</subject><subject>VDP</subject><subject>Zebrafish - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNp9kU9vEzEQxS0EoqHwBTiAj1w2eLz-txJCgghSpEpFEM6W1ztJHe2uF3tT0W-Po7QVvXCxZfu9n2fmEfIa2BIYqPf7pce-X3LGywVfMi6ekAWwRlcCNH9KFow1vDJKizPyIuc9Y8xIKZ-Ts7oWjVYAC7Je15-_ZzrjfI2JloVufq6oj8PU4x86R9rf5pjjgJm6saP5ME0Jc6bD5urHCmgOu9H1Ydy9JM-2rs_46m4_J7--ftmsLqrLq_W31afLygvdzJVrgXWqBg1CSCXKUSqQ3mhfdwimFd6AN77m3kmnGlOzIupao1uz5QBYn5OPJ-50aAfsPI5zcr2dUhhcurXRBfv4ZQzXdhdvrDbKmIYVwNsTwKeQ5zDaMSZngbFaWw5G6qJ4d_dFir8PmGc7hHyctBsxHrLlwoCSWjFepPweFnNOuH0oBJg9ZmT39ui0x4wscFsyKqY3_7bwYLkPpQg-nARYBnkTMNnsA44eu5DQz7aL4X_8v8nqoLw</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Prentzell, Mirja Tamara</creator><creator>Rehbein, Ulrike</creator><creator>Cadena Sandoval, Marti</creator><creator>De Meulemeester, Ann-Sofie</creator><creator>Baumeister, Ralf</creator><creator>Brohée, Laura</creator><creator>Berdel, Bianca</creator><creator>Bockwoldt, Mathias</creator><creator>Carroll, Bernadette</creator><creator>Chowdhury, Suvagata Roy</creator><creator>von Deimling, Andreas</creator><creator>Demetriades, Constantinos</creator><creator>Figlia, Gianluca</creator><creator>de Araujo, Mariana Eca Guimaraes</creator><creator>Heberle, Alexander M.</creator><creator>Heiland, Ines</creator><creator>Holzwarth, Birgit</creator><creator>Huber, Lukas A.</creator><creator>Jaworski, Jacek</creator><creator>Kedra, Magdalena</creator><creator>Kern, Katharina</creator><creator>Kopach, Andrii</creator><creator>Korolchuk, Viktor I.</creator><creator>van 't Land-Kuper, Ineke</creator><creator>Macias, Matylda</creator><creator>Nellist, Mark</creator><creator>Palm, Wilhelm</creator><creator>Pusch, Stefan</creator><creator>Ramos Pittol, Jose Miguel</creator><creator>Reil, Michèle</creator><creator>Reintjes, Anja</creator><creator>Reuter, Friederike</creator><creator>Sampson, Julian R.</creator><creator>Scheldeman, Chloë</creator><creator>Siekierska, Aleksandra</creator><creator>Stefan, Eduard</creator><creator>Teleman, Aurelio A.</creator><creator>Thomas, Laura E.</creator><creator>Torres-Quesada, Omar</creator><creator>Trump, Saskia</creator><creator>West, Hannah D.</creator><creator>de Witte, Peter</creator><creator>Woltering, Sandra</creator><creator>Yordanov, Teodor E.</creator><creator>Zmorzynska, Justyna</creator><creator>Opitz, Christiane A.</creator><creator>Thedieck, Kathrin</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8489-8732</orcidid><orcidid>https://orcid.org/0000-0002-8621-5285</orcidid><orcidid>https://orcid.org/0000-0001-7813-7726</orcidid><orcidid>https://orcid.org/0000-0002-2902-2348</orcidid><orcidid>https://orcid.org/0000-0003-3394-3075</orcidid><orcidid>https://orcid.org/0000-0003-4801-0673</orcidid><orcidid>https://orcid.org/0000-0002-4646-9969</orcidid><orcidid>https://orcid.org/0000-0003-1116-2120</orcidid><orcidid>https://orcid.org/0000-0002-9104-4222</orcidid><orcidid>https://orcid.org/0000-0001-8490-5816</orcidid><orcidid>https://orcid.org/0000-0001-8760-7865</orcidid><orcidid>https://orcid.org/0000-0002-8223-0023</orcidid><orcidid>https://orcid.org/0000-0002-9989-9567</orcidid><orcidid>https://orcid.org/0000-0003-3753-5394</orcidid><orcidid>https://orcid.org/0000-0001-6414-8707</orcidid><orcidid>https://orcid.org/0000-0001-8689-8488</orcidid><orcidid>https://orcid.org/0000-0002-3407-4249</orcidid><orcidid>https://orcid.org/0000-0002-6104-6534</orcidid></search><sort><creationdate>20210204</creationdate><title>G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling</title><author>Prentzell, Mirja Tamara ; Rehbein, Ulrike ; Cadena Sandoval, Marti ; De Meulemeester, Ann-Sofie ; Baumeister, Ralf ; Brohée, Laura ; Berdel, Bianca ; Bockwoldt, Mathias ; Carroll, Bernadette ; Chowdhury, Suvagata Roy ; von Deimling, Andreas ; Demetriades, Constantinos ; Figlia, Gianluca ; de Araujo, Mariana Eca Guimaraes ; Heberle, Alexander M. ; Heiland, Ines ; Holzwarth, Birgit ; Huber, Lukas A. ; Jaworski, Jacek ; Kedra, Magdalena ; Kern, Katharina ; Kopach, Andrii ; Korolchuk, Viktor I. ; van 't Land-Kuper, Ineke ; Macias, Matylda ; Nellist, Mark ; Palm, Wilhelm ; Pusch, Stefan ; Ramos Pittol, Jose Miguel ; Reil, Michèle ; Reintjes, Anja ; Reuter, Friederike ; Sampson, Julian R. ; Scheldeman, Chloë ; Siekierska, Aleksandra ; Stefan, Eduard ; Teleman, Aurelio A. ; Thomas, Laura E. ; Torres-Quesada, Omar ; Trump, Saskia ; West, Hannah D. ; de Witte, Peter ; Woltering, Sandra ; Yordanov, Teodor E. ; Zmorzynska, Justyna ; Opitz, Christiane A. ; Thedieck, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-ab10d6317144564ab15615c87c3de18b4c81c8c32ca5a6983064adb87b8f211e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</topic><topic>Basic medical, dental and veterinary science disciplines: 710</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cytoplasmic Granules - drug effects</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - metabolism</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>G3BP1</topic><topic>G3BP2</topic><topic>Humans</topic><topic>Insulin - pharmacology</topic><topic>Lysosomal Membrane Proteins - metabolism</topic><topic>lysosome</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Medical disciplines: 700</topic><topic>Medical molecular biology: 711</topic><topic>Medisinsk molekylærbiologi: 711</topic><topic>Medisinske Fag: 700</topic><topic>metabolism</topic><topic>mTORC1</topic><topic>neuronal function</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phenotype</topic><topic>Poly-ADP-Ribose Binding Proteins - chemistry</topic><topic>Poly-ADP-Ribose Binding Proteins - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - metabolism</topic><topic>RNA Recognition Motif Proteins - chemistry</topic><topic>RNA Recognition Motif Proteins - metabolism</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>stress granule</topic><topic>TSC complex</topic><topic>Tuberous Sclerosis - metabolism</topic><topic>VDP</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prentzell, Mirja Tamara</creatorcontrib><creatorcontrib>Rehbein, Ulrike</creatorcontrib><creatorcontrib>Cadena Sandoval, Marti</creatorcontrib><creatorcontrib>De Meulemeester, Ann-Sofie</creatorcontrib><creatorcontrib>Baumeister, Ralf</creatorcontrib><creatorcontrib>Brohée, Laura</creatorcontrib><creatorcontrib>Berdel, Bianca</creatorcontrib><creatorcontrib>Bockwoldt, Mathias</creatorcontrib><creatorcontrib>Carroll, Bernadette</creatorcontrib><creatorcontrib>Chowdhury, Suvagata Roy</creatorcontrib><creatorcontrib>von Deimling, Andreas</creatorcontrib><creatorcontrib>Demetriades, Constantinos</creatorcontrib><creatorcontrib>Figlia, Gianluca</creatorcontrib><creatorcontrib>de Araujo, Mariana Eca Guimaraes</creatorcontrib><creatorcontrib>Heberle, Alexander M.</creatorcontrib><creatorcontrib>Heiland, Ines</creatorcontrib><creatorcontrib>Holzwarth, Birgit</creatorcontrib><creatorcontrib>Huber, Lukas A.</creatorcontrib><creatorcontrib>Jaworski, Jacek</creatorcontrib><creatorcontrib>Kedra, Magdalena</creatorcontrib><creatorcontrib>Kern, Katharina</creatorcontrib><creatorcontrib>Kopach, Andrii</creatorcontrib><creatorcontrib>Korolchuk, Viktor I.</creatorcontrib><creatorcontrib>van 't Land-Kuper, Ineke</creatorcontrib><creatorcontrib>Macias, Matylda</creatorcontrib><creatorcontrib>Nellist, Mark</creatorcontrib><creatorcontrib>Palm, Wilhelm</creatorcontrib><creatorcontrib>Pusch, Stefan</creatorcontrib><creatorcontrib>Ramos Pittol, Jose Miguel</creatorcontrib><creatorcontrib>Reil, Michèle</creatorcontrib><creatorcontrib>Reintjes, Anja</creatorcontrib><creatorcontrib>Reuter, Friederike</creatorcontrib><creatorcontrib>Sampson, Julian R.</creatorcontrib><creatorcontrib>Scheldeman, Chloë</creatorcontrib><creatorcontrib>Siekierska, Aleksandra</creatorcontrib><creatorcontrib>Stefan, Eduard</creatorcontrib><creatorcontrib>Teleman, Aurelio A.</creatorcontrib><creatorcontrib>Thomas, Laura E.</creatorcontrib><creatorcontrib>Torres-Quesada, Omar</creatorcontrib><creatorcontrib>Trump, Saskia</creatorcontrib><creatorcontrib>West, Hannah D.</creatorcontrib><creatorcontrib>de Witte, Peter</creatorcontrib><creatorcontrib>Woltering, Sandra</creatorcontrib><creatorcontrib>Yordanov, Teodor E.</creatorcontrib><creatorcontrib>Zmorzynska, Justyna</creatorcontrib><creatorcontrib>Opitz, Christiane A.</creatorcontrib><creatorcontrib>Thedieck, Kathrin</creatorcontrib><creatorcontrib>Genomics England Research Consortium</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prentzell, Mirja Tamara</au><au>Rehbein, Ulrike</au><au>Cadena Sandoval, Marti</au><au>De Meulemeester, Ann-Sofie</au><au>Baumeister, Ralf</au><au>Brohée, Laura</au><au>Berdel, Bianca</au><au>Bockwoldt, Mathias</au><au>Carroll, Bernadette</au><au>Chowdhury, Suvagata Roy</au><au>von Deimling, Andreas</au><au>Demetriades, Constantinos</au><au>Figlia, Gianluca</au><au>de Araujo, Mariana Eca Guimaraes</au><au>Heberle, Alexander M.</au><au>Heiland, Ines</au><au>Holzwarth, Birgit</au><au>Huber, Lukas A.</au><au>Jaworski, Jacek</au><au>Kedra, Magdalena</au><au>Kern, Katharina</au><au>Kopach, Andrii</au><au>Korolchuk, Viktor I.</au><au>van 't Land-Kuper, Ineke</au><au>Macias, Matylda</au><au>Nellist, Mark</au><au>Palm, Wilhelm</au><au>Pusch, Stefan</au><au>Ramos Pittol, Jose Miguel</au><au>Reil, Michèle</au><au>Reintjes, Anja</au><au>Reuter, Friederike</au><au>Sampson, Julian R.</au><au>Scheldeman, Chloë</au><au>Siekierska, Aleksandra</au><au>Stefan, Eduard</au><au>Teleman, Aurelio A.</au><au>Thomas, Laura E.</au><au>Torres-Quesada, Omar</au><au>Trump, Saskia</au><au>West, Hannah D.</au><au>de Witte, Peter</au><au>Woltering, Sandra</au><au>Yordanov, Teodor E.</au><au>Zmorzynska, Justyna</au><au>Opitz, Christiane A.</au><au>Thedieck, Kathrin</au><aucorp>Genomics England Research Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-02-04</date><risdate>2021</risdate><volume>184</volume><issue>3</issue><spage>655</spage><epage>674.e27</epage><pages>655-674.e27</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling. [Display omitted] •G3BPs act non-redundantly in the TSC-mTORC1 signaling axis•G3BPs reside at the lysosomal surface and inhibit mTORC1•The TSC complex requires G3BPs as its lysosomal tether•G3BP1 deficiency phenocopies TSC complex loss in cancer cells and neurons Distinct from their contributions to stress granules, G3BPs regulate mTORC1 activity through spatial control of the TSC complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33497611</pmid><doi>10.1016/j.cell.2020.12.024</doi><orcidid>https://orcid.org/0000-0001-8489-8732</orcidid><orcidid>https://orcid.org/0000-0002-8621-5285</orcidid><orcidid>https://orcid.org/0000-0001-7813-7726</orcidid><orcidid>https://orcid.org/0000-0002-2902-2348</orcidid><orcidid>https://orcid.org/0000-0003-3394-3075</orcidid><orcidid>https://orcid.org/0000-0003-4801-0673</orcidid><orcidid>https://orcid.org/0000-0002-4646-9969</orcidid><orcidid>https://orcid.org/0000-0003-1116-2120</orcidid><orcidid>https://orcid.org/0000-0002-9104-4222</orcidid><orcidid>https://orcid.org/0000-0001-8490-5816</orcidid><orcidid>https://orcid.org/0000-0001-8760-7865</orcidid><orcidid>https://orcid.org/0000-0002-8223-0023</orcidid><orcidid>https://orcid.org/0000-0002-9989-9567</orcidid><orcidid>https://orcid.org/0000-0003-3753-5394</orcidid><orcidid>https://orcid.org/0000-0001-6414-8707</orcidid><orcidid>https://orcid.org/0000-0001-8689-8488</orcidid><orcidid>https://orcid.org/0000-0002-3407-4249</orcidid><orcidid>https://orcid.org/0000-0002-6104-6534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2021-02, Vol.184 (3), p.655-674.e27
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868890
source MEDLINE; NORA - Norwegian Open Research Archives; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptor Proteins, Signal Transducing - metabolism
Amino Acid Sequence
Animals
Basale medisinske, odontologiske og veterinærmedisinske fag: 710
Basic medical, dental and veterinary science disciplines: 710
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
cancer
Cell Line, Tumor
Cell Movement - drug effects
Cytoplasmic Granules - drug effects
Cytoplasmic Granules - metabolism
DNA Helicases - chemistry
DNA Helicases - metabolism
Evolution, Molecular
Female
G3BP1
G3BP2
Humans
Insulin - pharmacology
Lysosomal Membrane Proteins - metabolism
lysosome
Lysosomes - drug effects
Lysosomes - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
Medical disciplines: 700
Medical molecular biology: 711
Medisinsk molekylærbiologi: 711
Medisinske Fag: 700
metabolism
mTORC1
neuronal function
Neurons - drug effects
Neurons - metabolism
Phenotype
Poly-ADP-Ribose Binding Proteins - chemistry
Poly-ADP-Ribose Binding Proteins - metabolism
Rats
Rats, Wistar
RNA Helicases - chemistry
RNA Helicases - metabolism
RNA Recognition Motif Proteins - chemistry
RNA Recognition Motif Proteins - metabolism
RNA-Binding Proteins - metabolism
Signal Transduction - drug effects
stress granule
TSC complex
Tuberous Sclerosis - metabolism
VDP
Zebrafish - metabolism
title G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G3BPs%20tether%20the%20TSC%20complex%20to%20lysosomes%20and%20suppress%20mTORC1%20signaling&rft.jtitle=Cell&rft.au=Prentzell,%20Mirja%20Tamara&rft.aucorp=Genomics%20England%20Research%20Consortium&rft.date=2021-02-04&rft.volume=184&rft.issue=3&rft.spage=655&rft.epage=674.e27&rft.pages=655-674.e27&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.12.024&rft_dat=%3Cproquest_pubme%3E2481657602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481657602&rft_id=info:pmid/33497611&rft_els_id=S0092867420316949&rfr_iscdi=true