Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease
The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disea...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2021-01, Vol.78 (1), p.351-372 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 1 |
container_start_page | 351 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 78 |
creator | Romano, Roberta Rivellini, Cristina De Luca, Maria Tonlorenzi, Rossana Beli, Raffaella Manganelli, Fiore Nolano, Maria Santoro, Lucio Eskelinen, Eeva-Liisa Previtali, Stefano C. Bucci, Cecilia |
description | The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the
RAB7A
gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B. |
doi_str_mv | 10.1007/s00018-020-03510-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486883360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EoqXwAhyQJS5cAmMncewLUrvin1TEgSJxsybOpHGVjRfbC9ob78Ab8iS47FL-HDiNR_Obz9_oY-yhgKcCoHuWAEDoCiRUULcCKnGLHYumtAY6cfvwVlp-PGL3UroqdKulusuOaik1GKOO2fvTOVPE7MPCw8jzRHzGTJyWIbhd9o5vME9fcMf9wlcTRhfy96_f3mL0VOpFCHniebchLs_44BNhovvszohzogeHesI-vHxxsXpdnb979WZ1el65pmtyNTRocNBdL6BVNcGoDMqxd1rXchwQtVZtbwY9EkgqnXHYAvVq0P3QtI2qT9jzve5m269pcLTkiLPdRL_GuLMBvf17svjJXobPttOqa5u2CDw5CMTwaUsp27VPjuYZFwrbZGWtjSzuzDX6-B_0KmzjUs6zstGqeK4VFEruKRdDSpHGGzMC7HVmdp-ZLZnZn5lZUZYe_XnGzcqvkApQ74FURsslxd9__0f2B8umpK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486883360</pqid></control><display><type>article</type><title>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Romano, Roberta ; Rivellini, Cristina ; De Luca, Maria ; Tonlorenzi, Rossana ; Beli, Raffaella ; Manganelli, Fiore ; Nolano, Maria ; Santoro, Lucio ; Eskelinen, Eeva-Liisa ; Previtali, Stefano C. ; Bucci, Cecilia</creator><creatorcontrib>Romano, Roberta ; Rivellini, Cristina ; De Luca, Maria ; Tonlorenzi, Rossana ; Beli, Raffaella ; Manganelli, Fiore ; Nolano, Maria ; Santoro, Lucio ; Eskelinen, Eeva-Liisa ; Previtali, Stefano C. ; Bucci, Cecilia</creatorcontrib><description>The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the
RAB7A
gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-020-03510-1</identifier><identifier>PMID: 32280996</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Axonogenesis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cathepsins ; Cathepsins - metabolism ; Cell Biology ; Cell migration ; Cell Movement ; Cells, Cultured ; Cellular Reprogramming ; Charcot-Marie-Tooth disease ; Charcot-Marie-Tooth Disease - metabolism ; Charcot-Marie-Tooth Disease - pathology ; Degradation ; Endocytosis ; ErbB Receptors - metabolism ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gelatinase A ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Laminopathies - metabolism ; Laminopathies - pathology ; Life Sciences ; Lysosomal protein ; Lysosomes ; Lysosomes - metabolism ; Matrix Metalloproteinase 2 - metabolism ; Mutation ; Neurodegeneration ; Neurodegenerative diseases ; Neurons ; Neurotrophic factors ; Original ; Original Article ; Peripheral neuropathy ; Polymorphism, Single Nucleotide ; Proteins ; Proteolysis ; rab GTP-Binding Proteins - antagonists & inhibitors ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein - metabolism ; Rac1 protein ; RNA Interference ; RNA, Small Interfering - metabolism ; Sensory neurons ; Sensory Receptor Cells - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2021-01, Vol.78 (1), p.351-372</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</citedby><cites>FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</cites><orcidid>0000-0002-6232-6183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867545/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867545/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32280996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romano, Roberta</creatorcontrib><creatorcontrib>Rivellini, Cristina</creatorcontrib><creatorcontrib>De Luca, Maria</creatorcontrib><creatorcontrib>Tonlorenzi, Rossana</creatorcontrib><creatorcontrib>Beli, Raffaella</creatorcontrib><creatorcontrib>Manganelli, Fiore</creatorcontrib><creatorcontrib>Nolano, Maria</creatorcontrib><creatorcontrib>Santoro, Lucio</creatorcontrib><creatorcontrib>Eskelinen, Eeva-Liisa</creatorcontrib><creatorcontrib>Previtali, Stefano C.</creatorcontrib><creatorcontrib>Bucci, Cecilia</creatorcontrib><title>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the
RAB7A
gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.</description><subject>Axonogenesis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cathepsins</subject><subject>Cathepsins - metabolism</subject><subject>Cell Biology</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Cellular Reprogramming</subject><subject>Charcot-Marie-Tooth disease</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Charcot-Marie-Tooth Disease - pathology</subject><subject>Degradation</subject><subject>Endocytosis</subject><subject>ErbB Receptors - metabolism</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gelatinase A</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Laminopathies - metabolism</subject><subject>Laminopathies - pathology</subject><subject>Life Sciences</subject><subject>Lysosomal protein</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Mutation</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurotrophic factors</subject><subject>Original</subject><subject>Original Article</subject><subject>Peripheral neuropathy</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>rab GTP-Binding Proteins - antagonists & inhibitors</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rac1 protein</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9u1DAQxi0EoqXwAhyQJS5cAmMncewLUrvin1TEgSJxsybOpHGVjRfbC9ob78Ab8iS47FL-HDiNR_Obz9_oY-yhgKcCoHuWAEDoCiRUULcCKnGLHYumtAY6cfvwVlp-PGL3UroqdKulusuOaik1GKOO2fvTOVPE7MPCw8jzRHzGTJyWIbhd9o5vME9fcMf9wlcTRhfy96_f3mL0VOpFCHniebchLs_44BNhovvszohzogeHesI-vHxxsXpdnb979WZ1el65pmtyNTRocNBdL6BVNcGoDMqxd1rXchwQtVZtbwY9EkgqnXHYAvVq0P3QtI2qT9jzve5m269pcLTkiLPdRL_GuLMBvf17svjJXobPttOqa5u2CDw5CMTwaUsp27VPjuYZFwrbZGWtjSzuzDX6-B_0KmzjUs6zstGqeK4VFEruKRdDSpHGGzMC7HVmdp-ZLZnZn5lZUZYe_XnGzcqvkApQ74FURsslxd9__0f2B8umpK0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Romano, Roberta</creator><creator>Rivellini, Cristina</creator><creator>De Luca, Maria</creator><creator>Tonlorenzi, Rossana</creator><creator>Beli, Raffaella</creator><creator>Manganelli, Fiore</creator><creator>Nolano, Maria</creator><creator>Santoro, Lucio</creator><creator>Eskelinen, Eeva-Liisa</creator><creator>Previtali, Stefano C.</creator><creator>Bucci, Cecilia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6232-6183</orcidid></search><sort><creationdate>20210101</creationdate><title>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</title><author>Romano, Roberta ; Rivellini, Cristina ; De Luca, Maria ; Tonlorenzi, Rossana ; Beli, Raffaella ; Manganelli, Fiore ; Nolano, Maria ; Santoro, Lucio ; Eskelinen, Eeva-Liisa ; Previtali, Stefano C. ; Bucci, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axonogenesis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cathepsins</topic><topic>Cathepsins - metabolism</topic><topic>Cell Biology</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Cellular Reprogramming</topic><topic>Charcot-Marie-Tooth disease</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Charcot-Marie-Tooth Disease - pathology</topic><topic>Degradation</topic><topic>Endocytosis</topic><topic>ErbB Receptors - metabolism</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gelatinase A</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Laminopathies - metabolism</topic><topic>Laminopathies - pathology</topic><topic>Life Sciences</topic><topic>Lysosomal protein</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Mutation</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurotrophic factors</topic><topic>Original</topic><topic>Original Article</topic><topic>Peripheral neuropathy</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>rab GTP-Binding Proteins - antagonists & inhibitors</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rac1 protein</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Roberta</creatorcontrib><creatorcontrib>Rivellini, Cristina</creatorcontrib><creatorcontrib>De Luca, Maria</creatorcontrib><creatorcontrib>Tonlorenzi, Rossana</creatorcontrib><creatorcontrib>Beli, Raffaella</creatorcontrib><creatorcontrib>Manganelli, Fiore</creatorcontrib><creatorcontrib>Nolano, Maria</creatorcontrib><creatorcontrib>Santoro, Lucio</creatorcontrib><creatorcontrib>Eskelinen, Eeva-Liisa</creatorcontrib><creatorcontrib>Previtali, Stefano C.</creatorcontrib><creatorcontrib>Bucci, Cecilia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Roberta</au><au>Rivellini, Cristina</au><au>De Luca, Maria</au><au>Tonlorenzi, Rossana</au><au>Beli, Raffaella</au><au>Manganelli, Fiore</au><au>Nolano, Maria</au><au>Santoro, Lucio</au><au>Eskelinen, Eeva-Liisa</au><au>Previtali, Stefano C.</au><au>Bucci, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>78</volume><issue>1</issue><spage>351</spage><epage>372</epage><pages>351-372</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the
RAB7A
gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32280996</pmid><doi>10.1007/s00018-020-03510-1</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6232-6183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2021-01, Vol.78 (1), p.351-372 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867545 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Axonogenesis Biochemistry Biomedical and Life Sciences Biomedicine Cathepsins Cathepsins - metabolism Cell Biology Cell migration Cell Movement Cells, Cultured Cellular Reprogramming Charcot-Marie-Tooth disease Charcot-Marie-Tooth Disease - metabolism Charcot-Marie-Tooth Disease - pathology Degradation Endocytosis ErbB Receptors - metabolism Fibroblasts Fibroblasts - cytology Fibroblasts - metabolism Gelatinase A Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Laminopathies - metabolism Laminopathies - pathology Life Sciences Lysosomal protein Lysosomes Lysosomes - metabolism Matrix Metalloproteinase 2 - metabolism Mutation Neurodegeneration Neurodegenerative diseases Neurons Neurotrophic factors Original Original Article Peripheral neuropathy Polymorphism, Single Nucleotide Proteins Proteolysis rab GTP-Binding Proteins - antagonists & inhibitors rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - metabolism rac1 GTP-Binding Protein - metabolism Rac1 protein RNA Interference RNA, Small Interfering - metabolism Sensory neurons Sensory Receptor Cells - metabolism |
title | Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alteration%20of%20the%20late%20endocytic%20pathway%20in%20Charcot%E2%80%93Marie%E2%80%93Tooth%20type%202B%20disease&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Romano,%20Roberta&rft.date=2021-01-01&rft.volume=78&rft.issue=1&rft.spage=351&rft.epage=372&rft.pages=351-372&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-020-03510-1&rft_dat=%3Cproquest_pubme%3E2486883360%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486883360&rft_id=info:pmid/32280996&rfr_iscdi=true |