Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease

The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2021-01, Vol.78 (1), p.351-372
Hauptverfasser: Romano, Roberta, Rivellini, Cristina, De Luca, Maria, Tonlorenzi, Rossana, Beli, Raffaella, Manganelli, Fiore, Nolano, Maria, Santoro, Lucio, Eskelinen, Eeva-Liisa, Previtali, Stefano C., Bucci, Cecilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 1
container_start_page 351
container_title Cellular and molecular life sciences : CMLS
container_volume 78
creator Romano, Roberta
Rivellini, Cristina
De Luca, Maria
Tonlorenzi, Rossana
Beli, Raffaella
Manganelli, Fiore
Nolano, Maria
Santoro, Lucio
Eskelinen, Eeva-Liisa
Previtali, Stefano C.
Bucci, Cecilia
description The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
doi_str_mv 10.1007/s00018-020-03510-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486883360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EoqXwAhyQJS5cAmMncewLUrvin1TEgSJxsybOpHGVjRfbC9ob78Ab8iS47FL-HDiNR_Obz9_oY-yhgKcCoHuWAEDoCiRUULcCKnGLHYumtAY6cfvwVlp-PGL3UroqdKulusuOaik1GKOO2fvTOVPE7MPCw8jzRHzGTJyWIbhd9o5vME9fcMf9wlcTRhfy96_f3mL0VOpFCHniebchLs_44BNhovvszohzogeHesI-vHxxsXpdnb979WZ1el65pmtyNTRocNBdL6BVNcGoDMqxd1rXchwQtVZtbwY9EkgqnXHYAvVq0P3QtI2qT9jzve5m269pcLTkiLPdRL_GuLMBvf17svjJXobPttOqa5u2CDw5CMTwaUsp27VPjuYZFwrbZGWtjSzuzDX6-B_0KmzjUs6zstGqeK4VFEruKRdDSpHGGzMC7HVmdp-ZLZnZn5lZUZYe_XnGzcqvkApQ74FURsslxd9__0f2B8umpK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486883360</pqid></control><display><type>article</type><title>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Romano, Roberta ; Rivellini, Cristina ; De Luca, Maria ; Tonlorenzi, Rossana ; Beli, Raffaella ; Manganelli, Fiore ; Nolano, Maria ; Santoro, Lucio ; Eskelinen, Eeva-Liisa ; Previtali, Stefano C. ; Bucci, Cecilia</creator><creatorcontrib>Romano, Roberta ; Rivellini, Cristina ; De Luca, Maria ; Tonlorenzi, Rossana ; Beli, Raffaella ; Manganelli, Fiore ; Nolano, Maria ; Santoro, Lucio ; Eskelinen, Eeva-Liisa ; Previtali, Stefano C. ; Bucci, Cecilia</creatorcontrib><description>The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-020-03510-1</identifier><identifier>PMID: 32280996</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Axonogenesis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cathepsins ; Cathepsins - metabolism ; Cell Biology ; Cell migration ; Cell Movement ; Cells, Cultured ; Cellular Reprogramming ; Charcot-Marie-Tooth disease ; Charcot-Marie-Tooth Disease - metabolism ; Charcot-Marie-Tooth Disease - pathology ; Degradation ; Endocytosis ; ErbB Receptors - metabolism ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gelatinase A ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Laminopathies - metabolism ; Laminopathies - pathology ; Life Sciences ; Lysosomal protein ; Lysosomes ; Lysosomes - metabolism ; Matrix Metalloproteinase 2 - metabolism ; Mutation ; Neurodegeneration ; Neurodegenerative diseases ; Neurons ; Neurotrophic factors ; Original ; Original Article ; Peripheral neuropathy ; Polymorphism, Single Nucleotide ; Proteins ; Proteolysis ; rab GTP-Binding Proteins - antagonists &amp; inhibitors ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein - metabolism ; Rac1 protein ; RNA Interference ; RNA, Small Interfering - metabolism ; Sensory neurons ; Sensory Receptor Cells - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2021-01, Vol.78 (1), p.351-372</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</citedby><cites>FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</cites><orcidid>0000-0002-6232-6183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867545/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867545/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32280996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romano, Roberta</creatorcontrib><creatorcontrib>Rivellini, Cristina</creatorcontrib><creatorcontrib>De Luca, Maria</creatorcontrib><creatorcontrib>Tonlorenzi, Rossana</creatorcontrib><creatorcontrib>Beli, Raffaella</creatorcontrib><creatorcontrib>Manganelli, Fiore</creatorcontrib><creatorcontrib>Nolano, Maria</creatorcontrib><creatorcontrib>Santoro, Lucio</creatorcontrib><creatorcontrib>Eskelinen, Eeva-Liisa</creatorcontrib><creatorcontrib>Previtali, Stefano C.</creatorcontrib><creatorcontrib>Bucci, Cecilia</creatorcontrib><title>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.</description><subject>Axonogenesis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cathepsins</subject><subject>Cathepsins - metabolism</subject><subject>Cell Biology</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Cellular Reprogramming</subject><subject>Charcot-Marie-Tooth disease</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Charcot-Marie-Tooth Disease - pathology</subject><subject>Degradation</subject><subject>Endocytosis</subject><subject>ErbB Receptors - metabolism</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gelatinase A</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Laminopathies - metabolism</subject><subject>Laminopathies - pathology</subject><subject>Life Sciences</subject><subject>Lysosomal protein</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Mutation</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurotrophic factors</subject><subject>Original</subject><subject>Original Article</subject><subject>Peripheral neuropathy</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>rab GTP-Binding Proteins - antagonists &amp; inhibitors</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rac1 protein</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9u1DAQxi0EoqXwAhyQJS5cAmMncewLUrvin1TEgSJxsybOpHGVjRfbC9ob78Ab8iS47FL-HDiNR_Obz9_oY-yhgKcCoHuWAEDoCiRUULcCKnGLHYumtAY6cfvwVlp-PGL3UroqdKulusuOaik1GKOO2fvTOVPE7MPCw8jzRHzGTJyWIbhd9o5vME9fcMf9wlcTRhfy96_f3mL0VOpFCHniebchLs_44BNhovvszohzogeHesI-vHxxsXpdnb979WZ1el65pmtyNTRocNBdL6BVNcGoDMqxd1rXchwQtVZtbwY9EkgqnXHYAvVq0P3QtI2qT9jzve5m269pcLTkiLPdRL_GuLMBvf17svjJXobPttOqa5u2CDw5CMTwaUsp27VPjuYZFwrbZGWtjSzuzDX6-B_0KmzjUs6zstGqeK4VFEruKRdDSpHGGzMC7HVmdp-ZLZnZn5lZUZYe_XnGzcqvkApQ74FURsslxd9__0f2B8umpK0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Romano, Roberta</creator><creator>Rivellini, Cristina</creator><creator>De Luca, Maria</creator><creator>Tonlorenzi, Rossana</creator><creator>Beli, Raffaella</creator><creator>Manganelli, Fiore</creator><creator>Nolano, Maria</creator><creator>Santoro, Lucio</creator><creator>Eskelinen, Eeva-Liisa</creator><creator>Previtali, Stefano C.</creator><creator>Bucci, Cecilia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6232-6183</orcidid></search><sort><creationdate>20210101</creationdate><title>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</title><author>Romano, Roberta ; Rivellini, Cristina ; De Luca, Maria ; Tonlorenzi, Rossana ; Beli, Raffaella ; Manganelli, Fiore ; Nolano, Maria ; Santoro, Lucio ; Eskelinen, Eeva-Liisa ; Previtali, Stefano C. ; Bucci, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d4a9ad87b10563e0f69a2fbc8832fdaa8865b9d8fe02ea889ca50eb6d8bd45463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axonogenesis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cathepsins</topic><topic>Cathepsins - metabolism</topic><topic>Cell Biology</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Cellular Reprogramming</topic><topic>Charcot-Marie-Tooth disease</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Charcot-Marie-Tooth Disease - pathology</topic><topic>Degradation</topic><topic>Endocytosis</topic><topic>ErbB Receptors - metabolism</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gelatinase A</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Laminopathies - metabolism</topic><topic>Laminopathies - pathology</topic><topic>Life Sciences</topic><topic>Lysosomal protein</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Mutation</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurotrophic factors</topic><topic>Original</topic><topic>Original Article</topic><topic>Peripheral neuropathy</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>rab GTP-Binding Proteins - antagonists &amp; inhibitors</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rac1 protein</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Roberta</creatorcontrib><creatorcontrib>Rivellini, Cristina</creatorcontrib><creatorcontrib>De Luca, Maria</creatorcontrib><creatorcontrib>Tonlorenzi, Rossana</creatorcontrib><creatorcontrib>Beli, Raffaella</creatorcontrib><creatorcontrib>Manganelli, Fiore</creatorcontrib><creatorcontrib>Nolano, Maria</creatorcontrib><creatorcontrib>Santoro, Lucio</creatorcontrib><creatorcontrib>Eskelinen, Eeva-Liisa</creatorcontrib><creatorcontrib>Previtali, Stefano C.</creatorcontrib><creatorcontrib>Bucci, Cecilia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Roberta</au><au>Rivellini, Cristina</au><au>De Luca, Maria</au><au>Tonlorenzi, Rossana</au><au>Beli, Raffaella</au><au>Manganelli, Fiore</au><au>Nolano, Maria</au><au>Santoro, Lucio</au><au>Eskelinen, Eeva-Liisa</au><au>Previtali, Stefano C.</au><au>Bucci, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>78</volume><issue>1</issue><spage>351</spage><epage>372</epage><pages>351-372</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32280996</pmid><doi>10.1007/s00018-020-03510-1</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6232-6183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2021-01, Vol.78 (1), p.351-372
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867545
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Axonogenesis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cathepsins
Cathepsins - metabolism
Cell Biology
Cell migration
Cell Movement
Cells, Cultured
Cellular Reprogramming
Charcot-Marie-Tooth disease
Charcot-Marie-Tooth Disease - metabolism
Charcot-Marie-Tooth Disease - pathology
Degradation
Endocytosis
ErbB Receptors - metabolism
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Gelatinase A
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Laminopathies - metabolism
Laminopathies - pathology
Life Sciences
Lysosomal protein
Lysosomes
Lysosomes - metabolism
Matrix Metalloproteinase 2 - metabolism
Mutation
Neurodegeneration
Neurodegenerative diseases
Neurons
Neurotrophic factors
Original
Original Article
Peripheral neuropathy
Polymorphism, Single Nucleotide
Proteins
Proteolysis
rab GTP-Binding Proteins - antagonists & inhibitors
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
rac1 GTP-Binding Protein - metabolism
Rac1 protein
RNA Interference
RNA, Small Interfering - metabolism
Sensory neurons
Sensory Receptor Cells - metabolism
title Alteration of the late endocytic pathway in Charcot–Marie–Tooth type 2B disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alteration%20of%20the%20late%20endocytic%20pathway%20in%20Charcot%E2%80%93Marie%E2%80%93Tooth%20type%202B%20disease&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Romano,%20Roberta&rft.date=2021-01-01&rft.volume=78&rft.issue=1&rft.spage=351&rft.epage=372&rft.pages=351-372&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-020-03510-1&rft_dat=%3Cproquest_pubme%3E2486883360%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486883360&rft_id=info:pmid/32280996&rfr_iscdi=true