Performance of molecular crystals in conversion of light to mechanical work
Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extens...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (5), p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Halabi, Jad Mahmoud Ahmed, Ejaz Sofela, Samuel Naumov, Panče |
description | Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications. |
doi_str_mv | 10.1073/pnas.2020604118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006132</jstor_id><sourcerecordid>27006132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</originalsourceid><addsrcrecordid>eNpVkb1PwzAQxS0EouVjZgJlZEl759iJsyChii9RCQaYLcd12pTELnZa1P-eVC0Fphvu99493SPkAmGAkCXDhVVhQIFCCgxRHJA-Qo5xynI4JH0AmsWCUdYjJyHMASDnAo5JL0lYzhPM-uT51fjS-UZZbSJXRo2rjV7Wykfar0Or6hBVNtLOrowPlbMbpq6mszZqXdQYPVO20qqOvpz_OCNHZScw57t5St7v795Gj_H45eFpdDuONRPYxinNUsNyZopJgsAKoWkBlIsUqdJUF4xzgSVXDE0hTKZEkXEGqBky1IVIk1Nys_VdLIvGTLSxrVe1XPiqUX4tnark_42tZnLqVjITKccUO4PrnYF3n0sTWtlUQZu6Vta4ZZC0y4mAyJMOHW5R7V0I3pT7MwhyU4HcVCB_K-gUV3_T7fmfn3fA5RaYh9b5_Z5mAF02mnwDVuOM4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481101153</pqid></control><display><type>article</type><title>Performance of molecular crystals in conversion of light to mechanical work</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Halabi, Jad Mahmoud ; Ahmed, Ejaz ; Sofela, Samuel ; Naumov, Panče</creator><creatorcontrib>Halabi, Jad Mahmoud ; Ahmed, Ejaz ; Sofela, Samuel ; Naumov, Panče</creatorcontrib><description>Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2020604118</identifier><identifier>PMID: 33495317</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</citedby><cites>FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</cites><orcidid>0000-0003-2416-6569 ; 0000-0002-3676-2950 ; 0000-0002-0834-6263 ; 0000-0002-8709-8084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006132$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006132$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33495317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halabi, Jad Mahmoud</creatorcontrib><creatorcontrib>Ahmed, Ejaz</creatorcontrib><creatorcontrib>Sofela, Samuel</creatorcontrib><creatorcontrib>Naumov, Panče</creatorcontrib><title>Performance of molecular crystals in conversion of light to mechanical work</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.</description><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkb1PwzAQxS0EouVjZgJlZEl759iJsyChii9RCQaYLcd12pTELnZa1P-eVC0Fphvu99493SPkAmGAkCXDhVVhQIFCCgxRHJA-Qo5xynI4JH0AmsWCUdYjJyHMASDnAo5JL0lYzhPM-uT51fjS-UZZbSJXRo2rjV7Wykfar0Or6hBVNtLOrowPlbMbpq6mszZqXdQYPVO20qqOvpz_OCNHZScw57t5St7v795Gj_H45eFpdDuONRPYxinNUsNyZopJgsAKoWkBlIsUqdJUF4xzgSVXDE0hTKZEkXEGqBky1IVIk1Nys_VdLIvGTLSxrVe1XPiqUX4tnark_42tZnLqVjITKccUO4PrnYF3n0sTWtlUQZu6Vta4ZZC0y4mAyJMOHW5R7V0I3pT7MwhyU4HcVCB_K-gUV3_T7fmfn3fA5RaYh9b5_Z5mAF02mnwDVuOM4w</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Halabi, Jad Mahmoud</creator><creator>Ahmed, Ejaz</creator><creator>Sofela, Samuel</creator><creator>Naumov, Panče</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2416-6569</orcidid><orcidid>https://orcid.org/0000-0002-3676-2950</orcidid><orcidid>https://orcid.org/0000-0002-0834-6263</orcidid><orcidid>https://orcid.org/0000-0002-8709-8084</orcidid></search><sort><creationdate>20210202</creationdate><title>Performance of molecular crystals in conversion of light to mechanical work</title><author>Halabi, Jad Mahmoud ; Ahmed, Ejaz ; Sofela, Samuel ; Naumov, Panče</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-6276e494ebd3104b8c2b0258612ac2cb45581f5a41eb8e7a8b75401c4141cb863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halabi, Jad Mahmoud</creatorcontrib><creatorcontrib>Ahmed, Ejaz</creatorcontrib><creatorcontrib>Sofela, Samuel</creatorcontrib><creatorcontrib>Naumov, Panče</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halabi, Jad Mahmoud</au><au>Ahmed, Ejaz</au><au>Sofela, Samuel</au><au>Naumov, Panče</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of molecular crystals in conversion of light to mechanical work</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>118</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans–cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33495317</pmid><doi>10.1073/pnas.2020604118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2416-6569</orcidid><orcidid>https://orcid.org/0000-0002-3676-2950</orcidid><orcidid>https://orcid.org/0000-0002-0834-6263</orcidid><orcidid>https://orcid.org/0000-0002-8709-8084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-7 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865161 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Physical Sciences |
title | Performance of molecular crystals in conversion of light to mechanical work |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20molecular%20crystals%20in%20conversion%20of%20light%20to%20mechanical%20work&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Halabi,%20Jad%20Mahmoud&rft.date=2021-02-02&rft.volume=118&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2020604118&rft_dat=%3Cjstor_pubme%3E27006132%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481101153&rft_id=info:pmid/33495317&rft_jstor_id=27006132&rfr_iscdi=true |