Tissue-specific dynamic codon redefinition in Drosophila

Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (5), p.1-10
Hauptverfasser: Hudson, Andrew M., Szabo, Nicholas L., Loughran, Gary, Wills, Norma M., Atkins, John F., Cooley, Lynn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 5
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Hudson, Andrew M.
Szabo, Nicholas L.
Loughran, Gary
Wills, Norma M.
Atkins, John F.
Cooley, Lynn
description Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.
doi_str_mv 10.1073/pnas.2012793118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006153</jstor_id><sourcerecordid>27006153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEYmNw5gTakUuZ06RpekFC41OaxGWco3yVZWqb0rRI-_dk2hhwsCzLj1_bL0KXGG4x5GTWNjLcpoDTvCAY8yM0xlDghNECjtEYIM0TTlM6QmchrAGgyDicohEhGUCMMeJLF8Jgk9Ba7Uqnp2bTyDpm7Y1vpp01tnSN610sXDN96Hzw7cpV8hydlLIK9mKfJ-j96XE5f0kWb8-v8_tFoinO-iQ3YJQqqdZZoZS2kHKCCS8tA0atNLKUUBYUuDXMKG40U1arQmnNcMZyTSbobqfbDqq2Rtum72Ql2s7VstsIL53432ncSnz4L5FzlmFKosDNXqDzn4MNvahd0LaqZGP9EERKOWYEOGcRne1QHd8MnS0PazCIrd9i67f49TtOXP-97sD_GByBqx2wDr3vDv00B4gPEvIN5k-IVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481630886</pqid></control><display><type>article</type><title>Tissue-specific dynamic codon redefinition in Drosophila</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hudson, Andrew M. ; Szabo, Nicholas L. ; Loughran, Gary ; Wills, Norma M. ; Atkins, John F. ; Cooley, Lynn</creator><creatorcontrib>Hudson, Andrew M. ; Szabo, Nicholas L. ; Loughran, Gary ; Wills, Norma M. ; Atkins, John F. ; Cooley, Lynn</creatorcontrib><description>Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2012793118</identifier><identifier>PMID: 33500350</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Central Nervous System - metabolism ; Codon - genetics ; DNA, Complementary - genetics ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Genes, Reporter ; HEK293 Cells ; Humans ; Imaginal Discs - metabolism ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Neurons - metabolism ; Organ Specificity - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-10</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</citedby><cites>FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</cites><orcidid>0000-0002-4041-9397 ; 0000-0003-4665-1258 ; 0000-0002-2880-2051 ; 0000-0002-2683-5597 ; 0000-0001-7933-0165 ; 0000-0002-5055-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006153$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006153$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33500350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hudson, Andrew M.</creatorcontrib><creatorcontrib>Szabo, Nicholas L.</creatorcontrib><creatorcontrib>Loughran, Gary</creatorcontrib><creatorcontrib>Wills, Norma M.</creatorcontrib><creatorcontrib>Atkins, John F.</creatorcontrib><creatorcontrib>Cooley, Lynn</creatorcontrib><title>Tissue-specific dynamic codon redefinition in Drosophila</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Central Nervous System - metabolism</subject><subject>Codon - genetics</subject><subject>DNA, Complementary - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Genes, Reporter</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Imaginal Discs - metabolism</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Organ Specificity - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwzAMhiMEYmNw5gTakUuZ06RpekFC41OaxGWco3yVZWqb0rRI-_dk2hhwsCzLj1_bL0KXGG4x5GTWNjLcpoDTvCAY8yM0xlDghNECjtEYIM0TTlM6QmchrAGgyDicohEhGUCMMeJLF8Jgk9Ba7Uqnp2bTyDpm7Y1vpp01tnSN610sXDN96Hzw7cpV8hydlLIK9mKfJ-j96XE5f0kWb8-v8_tFoinO-iQ3YJQqqdZZoZS2kHKCCS8tA0atNLKUUBYUuDXMKG40U1arQmnNcMZyTSbobqfbDqq2Rtum72Ql2s7VstsIL53432ncSnz4L5FzlmFKosDNXqDzn4MNvahd0LaqZGP9EERKOWYEOGcRne1QHd8MnS0PazCIrd9i67f49TtOXP-97sD_GByBqx2wDr3vDv00B4gPEvIN5k-IVw</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Hudson, Andrew M.</creator><creator>Szabo, Nicholas L.</creator><creator>Loughran, Gary</creator><creator>Wills, Norma M.</creator><creator>Atkins, John F.</creator><creator>Cooley, Lynn</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4041-9397</orcidid><orcidid>https://orcid.org/0000-0003-4665-1258</orcidid><orcidid>https://orcid.org/0000-0002-2880-2051</orcidid><orcidid>https://orcid.org/0000-0002-2683-5597</orcidid><orcidid>https://orcid.org/0000-0001-7933-0165</orcidid><orcidid>https://orcid.org/0000-0002-5055-308X</orcidid></search><sort><creationdate>20210202</creationdate><title>Tissue-specific dynamic codon redefinition in Drosophila</title><author>Hudson, Andrew M. ; Szabo, Nicholas L. ; Loughran, Gary ; Wills, Norma M. ; Atkins, John F. ; Cooley, Lynn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Central Nervous System - metabolism</topic><topic>Codon - genetics</topic><topic>DNA, Complementary - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Genes, Reporter</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Imaginal Discs - metabolism</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Organ Specificity - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudson, Andrew M.</creatorcontrib><creatorcontrib>Szabo, Nicholas L.</creatorcontrib><creatorcontrib>Loughran, Gary</creatorcontrib><creatorcontrib>Wills, Norma M.</creatorcontrib><creatorcontrib>Atkins, John F.</creatorcontrib><creatorcontrib>Cooley, Lynn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudson, Andrew M.</au><au>Szabo, Nicholas L.</au><au>Loughran, Gary</au><au>Wills, Norma M.</au><au>Atkins, John F.</au><au>Cooley, Lynn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue-specific dynamic codon redefinition in Drosophila</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>118</volume><issue>5</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33500350</pmid><doi>10.1073/pnas.2012793118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4041-9397</orcidid><orcidid>https://orcid.org/0000-0003-4665-1258</orcidid><orcidid>https://orcid.org/0000-0002-2880-2051</orcidid><orcidid>https://orcid.org/0000-0002-2683-5597</orcidid><orcidid>https://orcid.org/0000-0001-7933-0165</orcidid><orcidid>https://orcid.org/0000-0002-5055-308X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865143
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Central Nervous System - metabolism
Codon - genetics
DNA, Complementary - genetics
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Genes, Reporter
HEK293 Cells
Humans
Imaginal Discs - metabolism
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Neurons - metabolism
Organ Specificity - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
title Tissue-specific dynamic codon redefinition in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue-specific%20dynamic%20codon%20redefinition%20in%20Drosophila&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hudson,%20Andrew%20M.&rft.date=2021-02-02&rft.volume=118&rft.issue=5&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2012793118&rft_dat=%3Cjstor_pubme%3E27006153%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481630886&rft_id=info:pmid/33500350&rft_jstor_id=27006153&rfr_iscdi=true