Tissue-specific dynamic codon redefinition in Drosophila
Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (5), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Hudson, Andrew M. Szabo, Nicholas L. Loughran, Gary Wills, Norma M. Atkins, John F. Cooley, Lynn |
description | Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant. |
doi_str_mv | 10.1073/pnas.2012793118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006153</jstor_id><sourcerecordid>27006153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEYmNw5gTakUuZ06RpekFC41OaxGWco3yVZWqb0rRI-_dk2hhwsCzLj1_bL0KXGG4x5GTWNjLcpoDTvCAY8yM0xlDghNECjtEYIM0TTlM6QmchrAGgyDicohEhGUCMMeJLF8Jgk9Ba7Uqnp2bTyDpm7Y1vpp01tnSN610sXDN96Hzw7cpV8hydlLIK9mKfJ-j96XE5f0kWb8-v8_tFoinO-iQ3YJQqqdZZoZS2kHKCCS8tA0atNLKUUBYUuDXMKG40U1arQmnNcMZyTSbobqfbDqq2Rtum72Ql2s7VstsIL53432ncSnz4L5FzlmFKosDNXqDzn4MNvahd0LaqZGP9EERKOWYEOGcRne1QHd8MnS0PazCIrd9i67f49TtOXP-97sD_GByBqx2wDr3vDv00B4gPEvIN5k-IVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481630886</pqid></control><display><type>article</type><title>Tissue-specific dynamic codon redefinition in Drosophila</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hudson, Andrew M. ; Szabo, Nicholas L. ; Loughran, Gary ; Wills, Norma M. ; Atkins, John F. ; Cooley, Lynn</creator><creatorcontrib>Hudson, Andrew M. ; Szabo, Nicholas L. ; Loughran, Gary ; Wills, Norma M. ; Atkins, John F. ; Cooley, Lynn</creatorcontrib><description>Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2012793118</identifier><identifier>PMID: 33500350</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Central Nervous System - metabolism ; Codon - genetics ; DNA, Complementary - genetics ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Genes, Reporter ; HEK293 Cells ; Humans ; Imaginal Discs - metabolism ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Neurons - metabolism ; Organ Specificity - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-10</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</citedby><cites>FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</cites><orcidid>0000-0002-4041-9397 ; 0000-0003-4665-1258 ; 0000-0002-2880-2051 ; 0000-0002-2683-5597 ; 0000-0001-7933-0165 ; 0000-0002-5055-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006153$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006153$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33500350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hudson, Andrew M.</creatorcontrib><creatorcontrib>Szabo, Nicholas L.</creatorcontrib><creatorcontrib>Loughran, Gary</creatorcontrib><creatorcontrib>Wills, Norma M.</creatorcontrib><creatorcontrib>Atkins, John F.</creatorcontrib><creatorcontrib>Cooley, Lynn</creatorcontrib><title>Tissue-specific dynamic codon redefinition in Drosophila</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Central Nervous System - metabolism</subject><subject>Codon - genetics</subject><subject>DNA, Complementary - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Genes, Reporter</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Imaginal Discs - metabolism</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Organ Specificity - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwzAMhiMEYmNw5gTakUuZ06RpekFC41OaxGWco3yVZWqb0rRI-_dk2hhwsCzLj1_bL0KXGG4x5GTWNjLcpoDTvCAY8yM0xlDghNECjtEYIM0TTlM6QmchrAGgyDicohEhGUCMMeJLF8Jgk9Ba7Uqnp2bTyDpm7Y1vpp01tnSN610sXDN96Hzw7cpV8hydlLIK9mKfJ-j96XE5f0kWb8-v8_tFoinO-iQ3YJQqqdZZoZS2kHKCCS8tA0atNLKUUBYUuDXMKG40U1arQmnNcMZyTSbobqfbDqq2Rtum72Ql2s7VstsIL53432ncSnz4L5FzlmFKosDNXqDzn4MNvahd0LaqZGP9EERKOWYEOGcRne1QHd8MnS0PazCIrd9i67f49TtOXP-97sD_GByBqx2wDr3vDv00B4gPEvIN5k-IVw</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Hudson, Andrew M.</creator><creator>Szabo, Nicholas L.</creator><creator>Loughran, Gary</creator><creator>Wills, Norma M.</creator><creator>Atkins, John F.</creator><creator>Cooley, Lynn</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4041-9397</orcidid><orcidid>https://orcid.org/0000-0003-4665-1258</orcidid><orcidid>https://orcid.org/0000-0002-2880-2051</orcidid><orcidid>https://orcid.org/0000-0002-2683-5597</orcidid><orcidid>https://orcid.org/0000-0001-7933-0165</orcidid><orcidid>https://orcid.org/0000-0002-5055-308X</orcidid></search><sort><creationdate>20210202</creationdate><title>Tissue-specific dynamic codon redefinition in Drosophila</title><author>Hudson, Andrew M. ; Szabo, Nicholas L. ; Loughran, Gary ; Wills, Norma M. ; Atkins, John F. ; Cooley, Lynn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7d0dbbf4cc59bbce0283138fe6064eadafa0f9408ed6db8dc6becb9bcc61567c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Central Nervous System - metabolism</topic><topic>Codon - genetics</topic><topic>DNA, Complementary - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Genes, Reporter</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Imaginal Discs - metabolism</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Organ Specificity - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudson, Andrew M.</creatorcontrib><creatorcontrib>Szabo, Nicholas L.</creatorcontrib><creatorcontrib>Loughran, Gary</creatorcontrib><creatorcontrib>Wills, Norma M.</creatorcontrib><creatorcontrib>Atkins, John F.</creatorcontrib><creatorcontrib>Cooley, Lynn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudson, Andrew M.</au><au>Szabo, Nicholas L.</au><au>Loughran, Gary</au><au>Wills, Norma M.</au><au>Atkins, John F.</au><au>Cooley, Lynn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue-specific dynamic codon redefinition in Drosophila</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>118</volume><issue>5</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Translational stop codon readthrough occurs in organisms ranging from viruses to mammals and is especially prevalent in decoding Drosophila and viral mRNAs. Recoding of UGA, UAG, or UAA to specify an amino acid allows a proportion of the protein encoded by a single gene to be C-terminally extended. The extended product from Drosophila kelch mRNA is 160 kDa, whereas unextended Kelch protein, a subunit of a Cullin3-RING ubiquitin ligase, is 76 kDa. Previously we reported tissue-specific regulation of readthrough of the first kelch stop codon. Here, we characterize major efficiency differences in a variety of cell types. Immunoblotting revealed low levels of readthrough in malpighian tubules, ovary, and testis but abundant readthrough product in lysates of larval and adult central nervous system (CNS) tissue. Reporters of readthrough demonstrated greater than 30% readthrough in adult brains, and imaging in larval and adult brains showed that readthrough occurred in neurons but not glia. The extent of readthrough stimulatory sequences flanking the readthrough stop codon was assessed in transgenic Drosophila and in human tissue culture cells where inefficient readthrough occurs. A 99-nucleotide sequence with potential to form an mRNA stem-loop 3′ of the readthrough stop codon stimulated readthrough efficiency. However, even with just six nucleotides of kelch mRNA sequence 3′ of the stop codon, readthrough efficiency only dropped to 6% in adult neurons. Finally, we show that high-efficiency readthrough in the Drosophila CNS is common; for many neuronal proteins, C-terminal extended forms of individual proteins are likely relatively abundant.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33500350</pmid><doi>10.1073/pnas.2012793118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4041-9397</orcidid><orcidid>https://orcid.org/0000-0003-4665-1258</orcidid><orcidid>https://orcid.org/0000-0002-2880-2051</orcidid><orcidid>https://orcid.org/0000-0002-2683-5597</orcidid><orcidid>https://orcid.org/0000-0001-7933-0165</orcidid><orcidid>https://orcid.org/0000-0002-5055-308X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (5), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865143 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Central Nervous System - metabolism Codon - genetics DNA, Complementary - genetics Drosophila melanogaster - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Genes, Reporter HEK293 Cells Humans Imaginal Discs - metabolism Microfilament Proteins - genetics Microfilament Proteins - metabolism Neurons - metabolism Organ Specificity - genetics RNA, Messenger - genetics RNA, Messenger - metabolism |
title | Tissue-specific dynamic codon redefinition in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue-specific%20dynamic%20codon%20redefinition%20in%20Drosophila&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hudson,%20Andrew%20M.&rft.date=2021-02-02&rft.volume=118&rft.issue=5&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2012793118&rft_dat=%3Cjstor_pubme%3E27006153%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481630886&rft_id=info:pmid/33500350&rft_jstor_id=27006153&rfr_iscdi=true |