Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese
Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-12, Vol.295 (50), p.17200-17214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17214 |
---|---|
container_issue | 50 |
container_start_page | 17200 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Smethurst, Daniel G.J. Kovalev, Nikolay McKenzie, Erica R. Pestov, Dimitri G. Shcherbik, Natalia |
description | Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress. |
doi_str_mv | 10.1074/jbc.RA120.015025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817506109</els_id><sourcerecordid>2449993387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</originalsourceid><addsrcrecordid>eNp1kc9PHCEUx0lT0121954Mx15mhYHZAQ9NNptWNzExMZp4Iwy8WTE7sAVmo_-96Kqxh3Lh8P3Be3wQ-kHJjJKWnz50Zna9oDWZEdqQuvmCppQIVrGG3n1FU0JqWsm6ERN0mNIDKYdL-g1NGCO8iHyK7lYx-GoA63QGiy2so7Y6u-Bx6HF0XUhhgIRHbyHi8OhexB3glCOkhF3COmfw42u6e8KD9mvtIcExOuj1JsH3t_sI3f75fbO8qC6vzlfLxWVluOS5MqyllMlWGs143zZ1ayl0hjArBIWm7oHLfi4aQfpaWKuLEZjmcs6k5bbT7Aj92vdux66sYcDnqDdqG92g45MK2ql_Fe_u1TrsVCvmTEhRCn6-FcTwd4SU1eCSgc2mrBHGpGrOpZSMibZYyd5qYkgpQv_xDCXqBYgqQNQrELUHUiInn8f7CLwTKIazvQHKJ-0cRJWMA28KkQgmKxvc_9ufARzdnPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449993387</pqid></control><display><type>article</type><title>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Smethurst, Daniel G.J. ; Kovalev, Nikolay ; McKenzie, Erica R. ; Pestov, Dimitri G. ; Shcherbik, Natalia</creator><creatorcontrib>Smethurst, Daniel G.J. ; Kovalev, Nikolay ; McKenzie, Erica R. ; Pestov, Dimitri G. ; Shcherbik, Natalia</creatorcontrib><description>Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.015025</identifier><identifier>PMID: 33040024</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cell viability ; degradation of ribosomes ; iron ; Iron - metabolism ; manganese ; Manganese - metabolism ; metals ; oxidants ; Oxidative Stress ; ribosomal ribonucleic acid (rRNA) ; ribosome ; ribosome structure ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA ; RNA folding ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; yeast</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (50), p.17200-17214</ispartof><rights>2020 © 2020 Smethurst et al.</rights><rights>2020 Smethurst et al.</rights><rights>2020 Smethurst et al. 2020 Smethurst et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</citedby><cites>FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</cites><orcidid>0000-0001-9599-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33040024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smethurst, Daniel G.J.</creatorcontrib><creatorcontrib>Kovalev, Nikolay</creatorcontrib><creatorcontrib>McKenzie, Erica R.</creatorcontrib><creatorcontrib>Pestov, Dimitri G.</creatorcontrib><creatorcontrib>Shcherbik, Natalia</creatorcontrib><title>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.</description><subject>cell viability</subject><subject>degradation of ribosomes</subject><subject>iron</subject><subject>Iron - metabolism</subject><subject>manganese</subject><subject>Manganese - metabolism</subject><subject>metals</subject><subject>oxidants</subject><subject>Oxidative Stress</subject><subject>ribosomal ribonucleic acid (rRNA)</subject><subject>ribosome</subject><subject>ribosome structure</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA folding</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9PHCEUx0lT0121954Mx15mhYHZAQ9NNptWNzExMZp4Iwy8WTE7sAVmo_-96Kqxh3Lh8P3Be3wQ-kHJjJKWnz50Zna9oDWZEdqQuvmCppQIVrGG3n1FU0JqWsm6ERN0mNIDKYdL-g1NGCO8iHyK7lYx-GoA63QGiy2so7Y6u-Bx6HF0XUhhgIRHbyHi8OhexB3glCOkhF3COmfw42u6e8KD9mvtIcExOuj1JsH3t_sI3f75fbO8qC6vzlfLxWVluOS5MqyllMlWGs143zZ1ayl0hjArBIWm7oHLfi4aQfpaWKuLEZjmcs6k5bbT7Aj92vdux66sYcDnqDdqG92g45MK2ql_Fe_u1TrsVCvmTEhRCn6-FcTwd4SU1eCSgc2mrBHGpGrOpZSMibZYyd5qYkgpQv_xDCXqBYgqQNQrELUHUiInn8f7CLwTKIazvQHKJ-0cRJWMA28KkQgmKxvc_9ufARzdnPs</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Smethurst, Daniel G.J.</creator><creator>Kovalev, Nikolay</creator><creator>McKenzie, Erica R.</creator><creator>Pestov, Dimitri G.</creator><creator>Shcherbik, Natalia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9599-8966</orcidid></search><sort><creationdate>20201211</creationdate><title>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</title><author>Smethurst, Daniel G.J. ; Kovalev, Nikolay ; McKenzie, Erica R. ; Pestov, Dimitri G. ; Shcherbik, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell viability</topic><topic>degradation of ribosomes</topic><topic>iron</topic><topic>Iron - metabolism</topic><topic>manganese</topic><topic>Manganese - metabolism</topic><topic>metals</topic><topic>oxidants</topic><topic>Oxidative Stress</topic><topic>ribosomal ribonucleic acid (rRNA)</topic><topic>ribosome</topic><topic>ribosome structure</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA folding</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smethurst, Daniel G.J.</creatorcontrib><creatorcontrib>Kovalev, Nikolay</creatorcontrib><creatorcontrib>McKenzie, Erica R.</creatorcontrib><creatorcontrib>Pestov, Dimitri G.</creatorcontrib><creatorcontrib>Shcherbik, Natalia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smethurst, Daniel G.J.</au><au>Kovalev, Nikolay</au><au>McKenzie, Erica R.</au><au>Pestov, Dimitri G.</au><au>Shcherbik, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>295</volume><issue>50</issue><spage>17200</spage><epage>17214</epage><pages>17200-17214</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33040024</pmid><doi>10.1074/jbc.RA120.015025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9599-8966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-12, Vol.295 (50), p.17200-17214 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863898 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | cell viability degradation of ribosomes iron Iron - metabolism manganese Manganese - metabolism metals oxidants Oxidative Stress ribosomal ribonucleic acid (rRNA) ribosome ribosome structure Ribosomes - genetics Ribosomes - metabolism RNA RNA folding RNA, Fungal - genetics RNA, Fungal - metabolism RNA, Ribosomal - genetics RNA, Ribosomal - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism yeast |
title | Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron-mediated%20degradation%20of%20ribosomes%20under%20oxidative%20stress%20is%20attenuated%20by%20manganese&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Smethurst,%20Daniel%20G.J.&rft.date=2020-12-11&rft.volume=295&rft.issue=50&rft.spage=17200&rft.epage=17214&rft.pages=17200-17214&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.015025&rft_dat=%3Cproquest_pubme%3E2449993387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449993387&rft_id=info:pmid/33040024&rft_els_id=S0021925817506109&rfr_iscdi=true |