Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese

Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-12, Vol.295 (50), p.17200-17214
Hauptverfasser: Smethurst, Daniel G.J., Kovalev, Nikolay, McKenzie, Erica R., Pestov, Dimitri G., Shcherbik, Natalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17214
container_issue 50
container_start_page 17200
container_title The Journal of biological chemistry
container_volume 295
creator Smethurst, Daniel G.J.
Kovalev, Nikolay
McKenzie, Erica R.
Pestov, Dimitri G.
Shcherbik, Natalia
description Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.
doi_str_mv 10.1074/jbc.RA120.015025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817506109</els_id><sourcerecordid>2449993387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</originalsourceid><addsrcrecordid>eNp1kc9PHCEUx0lT0121954Mx15mhYHZAQ9NNptWNzExMZp4Iwy8WTE7sAVmo_-96Kqxh3Lh8P3Be3wQ-kHJjJKWnz50Zna9oDWZEdqQuvmCppQIVrGG3n1FU0JqWsm6ERN0mNIDKYdL-g1NGCO8iHyK7lYx-GoA63QGiy2so7Y6u-Bx6HF0XUhhgIRHbyHi8OhexB3glCOkhF3COmfw42u6e8KD9mvtIcExOuj1JsH3t_sI3f75fbO8qC6vzlfLxWVluOS5MqyllMlWGs143zZ1ayl0hjArBIWm7oHLfi4aQfpaWKuLEZjmcs6k5bbT7Aj92vdux66sYcDnqDdqG92g45MK2ql_Fe_u1TrsVCvmTEhRCn6-FcTwd4SU1eCSgc2mrBHGpGrOpZSMibZYyd5qYkgpQv_xDCXqBYgqQNQrELUHUiInn8f7CLwTKIazvQHKJ-0cRJWMA28KkQgmKxvc_9ufARzdnPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449993387</pqid></control><display><type>article</type><title>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Smethurst, Daniel G.J. ; Kovalev, Nikolay ; McKenzie, Erica R. ; Pestov, Dimitri G. ; Shcherbik, Natalia</creator><creatorcontrib>Smethurst, Daniel G.J. ; Kovalev, Nikolay ; McKenzie, Erica R. ; Pestov, Dimitri G. ; Shcherbik, Natalia</creatorcontrib><description>Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.015025</identifier><identifier>PMID: 33040024</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cell viability ; degradation of ribosomes ; iron ; Iron - metabolism ; manganese ; Manganese - metabolism ; metals ; oxidants ; Oxidative Stress ; ribosomal ribonucleic acid (rRNA) ; ribosome ; ribosome structure ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA ; RNA folding ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; yeast</subject><ispartof>The Journal of biological chemistry, 2020-12, Vol.295 (50), p.17200-17214</ispartof><rights>2020 © 2020 Smethurst et al.</rights><rights>2020 Smethurst et al.</rights><rights>2020 Smethurst et al. 2020 Smethurst et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</citedby><cites>FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</cites><orcidid>0000-0001-9599-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33040024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smethurst, Daniel G.J.</creatorcontrib><creatorcontrib>Kovalev, Nikolay</creatorcontrib><creatorcontrib>McKenzie, Erica R.</creatorcontrib><creatorcontrib>Pestov, Dimitri G.</creatorcontrib><creatorcontrib>Shcherbik, Natalia</creatorcontrib><title>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.</description><subject>cell viability</subject><subject>degradation of ribosomes</subject><subject>iron</subject><subject>Iron - metabolism</subject><subject>manganese</subject><subject>Manganese - metabolism</subject><subject>metals</subject><subject>oxidants</subject><subject>Oxidative Stress</subject><subject>ribosomal ribonucleic acid (rRNA)</subject><subject>ribosome</subject><subject>ribosome structure</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA folding</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9PHCEUx0lT0121954Mx15mhYHZAQ9NNptWNzExMZp4Iwy8WTE7sAVmo_-96Kqxh3Lh8P3Be3wQ-kHJjJKWnz50Zna9oDWZEdqQuvmCppQIVrGG3n1FU0JqWsm6ERN0mNIDKYdL-g1NGCO8iHyK7lYx-GoA63QGiy2so7Y6u-Bx6HF0XUhhgIRHbyHi8OhexB3glCOkhF3COmfw42u6e8KD9mvtIcExOuj1JsH3t_sI3f75fbO8qC6vzlfLxWVluOS5MqyllMlWGs143zZ1ayl0hjArBIWm7oHLfi4aQfpaWKuLEZjmcs6k5bbT7Aj92vdux66sYcDnqDdqG92g45MK2ql_Fe_u1TrsVCvmTEhRCn6-FcTwd4SU1eCSgc2mrBHGpGrOpZSMibZYyd5qYkgpQv_xDCXqBYgqQNQrELUHUiInn8f7CLwTKIazvQHKJ-0cRJWMA28KkQgmKxvc_9ufARzdnPs</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Smethurst, Daniel G.J.</creator><creator>Kovalev, Nikolay</creator><creator>McKenzie, Erica R.</creator><creator>Pestov, Dimitri G.</creator><creator>Shcherbik, Natalia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9599-8966</orcidid></search><sort><creationdate>20201211</creationdate><title>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</title><author>Smethurst, Daniel G.J. ; Kovalev, Nikolay ; McKenzie, Erica R. ; Pestov, Dimitri G. ; Shcherbik, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-c37113979ca34f7527d1ebc03d881e52fe49f68580f28dda79ce3a49639d4dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell viability</topic><topic>degradation of ribosomes</topic><topic>iron</topic><topic>Iron - metabolism</topic><topic>manganese</topic><topic>Manganese - metabolism</topic><topic>metals</topic><topic>oxidants</topic><topic>Oxidative Stress</topic><topic>ribosomal ribonucleic acid (rRNA)</topic><topic>ribosome</topic><topic>ribosome structure</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA folding</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smethurst, Daniel G.J.</creatorcontrib><creatorcontrib>Kovalev, Nikolay</creatorcontrib><creatorcontrib>McKenzie, Erica R.</creatorcontrib><creatorcontrib>Pestov, Dimitri G.</creatorcontrib><creatorcontrib>Shcherbik, Natalia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smethurst, Daniel G.J.</au><au>Kovalev, Nikolay</au><au>McKenzie, Erica R.</au><au>Pestov, Dimitri G.</au><au>Shcherbik, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>295</volume><issue>50</issue><spage>17200</spage><epage>17214</epage><pages>17200-17214</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33040024</pmid><doi>10.1074/jbc.RA120.015025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9599-8966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-12, Vol.295 (50), p.17200-17214
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863898
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects cell viability
degradation of ribosomes
iron
Iron - metabolism
manganese
Manganese - metabolism
metals
oxidants
Oxidative Stress
ribosomal ribonucleic acid (rRNA)
ribosome
ribosome structure
Ribosomes - genetics
Ribosomes - metabolism
RNA
RNA folding
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA, Ribosomal - genetics
RNA, Ribosomal - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
yeast
title Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron-mediated%20degradation%20of%20ribosomes%20under%20oxidative%20stress%20is%20attenuated%20by%20manganese&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Smethurst,%20Daniel%20G.J.&rft.date=2020-12-11&rft.volume=295&rft.issue=50&rft.spage=17200&rft.epage=17214&rft.pages=17200-17214&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.015025&rft_dat=%3Cproquest_pubme%3E2449993387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449993387&rft_id=info:pmid/33040024&rft_els_id=S0021925817506109&rfr_iscdi=true