Cell‐Free Vascular Grafts That Grow with the Host
Cell‐free small diameter vascular grafts, based on small intestinal submucosa functionalized with heparin and vascular endothelial growth factor (VEGF) are manufactured and implanted successfully into the arterial system of neonatal lambs, where they remain patent and grow in size with the host to a...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-11, Vol.30 (48), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Nasiri, Bita Row, Sindhu Smith, Randall J. Swartz, Daniel D. Andreadis, Stelios T. |
description | Cell‐free small diameter vascular grafts, based on small intestinal submucosa functionalized with heparin and vascular endothelial growth factor (VEGF) are manufactured and implanted successfully into the arterial system of neonatal lambs, where they remain patent and grow in size with the host to a similar extent and with similar rate as native arteries. Acellular tissue engineered vessels (A‐TEVs) integrate seamlessly into the native vasculature and develop confluent, functional endothelium that affords patency. The medial layer is infiltrated by smooth muscle cells, shows no signs of calcification, and develops contractile function. The vascular wall undergoes remarkable extracellular matrix remodeling exhibiting elastin fibers and even inner elastic lamina within six months. Taken together, the results suggest that VEGF‐based A‐TEVs may be suitable for treatment of congenital heart disorders to alleviate the need for repeated surgeries, which are currently standard practice.
Cell‐free vascular grafts containing immobilized vascular endothelial growth factor are implanted into the arterial system of neonatal lambs, where they remain patent, undergo significant remodeling, and grow with the animal host in length and diameter. Successful size expansion, integration into the native vasculature, and development of vascular function may provide off‐the‐shelf bioengineered arteries for the treatment of congenital heart defects. |
doi_str_mv | 10.1002/adfm.202005769 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463935188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-84df4a92ccaf394b18f206146c9faeec41b1adda46ec6b2d52e9f25bf7a6349a3</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMo3rcuZcCNm9bcM9kIUq0KihsVd-FMJrEj044mM5bufASf0ScxUq2XjascyHc-zs-P0A7BfYIxPYDSj_sUU4yFknoJrRNJZI9hmi8vZnK3hjZifMCYKMX4KlpjTAiiCF1HbODq-u3ldRicy24h2q6GkJ0G8G3MrkfQprmZZtOqHWXtyGVnTWy30IqHOrrtz3cT3QxPrgdnvYur0_PB0UXPCix0L-el56CpteCZ5gXJPcWScGm1B-csJwWBsgQunZUFLQV12lNReAWScQ1sEx3OvY9dMXaldZM2QG0eQzWGMDMNVOb3z6Qamfvm2ahcKK5wEux_CkLz1LnYmnEVbQoME9d00VCeK84YUyyhe3_Qh6YLkxQvUZJpJkieJ6o_p2xoYgzOL44h2Hz0YT76MIs-0sLuzwgL_KuABOg5MK1qN_tHZ46Oh5ff8neZW5fP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463935188</pqid></control><display><type>article</type><title>Cell‐Free Vascular Grafts That Grow with the Host</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nasiri, Bita ; Row, Sindhu ; Smith, Randall J. ; Swartz, Daniel D. ; Andreadis, Stelios T.</creator><creatorcontrib>Nasiri, Bita ; Row, Sindhu ; Smith, Randall J. ; Swartz, Daniel D. ; Andreadis, Stelios T.</creatorcontrib><description>Cell‐free small diameter vascular grafts, based on small intestinal submucosa functionalized with heparin and vascular endothelial growth factor (VEGF) are manufactured and implanted successfully into the arterial system of neonatal lambs, where they remain patent and grow in size with the host to a similar extent and with similar rate as native arteries. Acellular tissue engineered vessels (A‐TEVs) integrate seamlessly into the native vasculature and develop confluent, functional endothelium that affords patency. The medial layer is infiltrated by smooth muscle cells, shows no signs of calcification, and develops contractile function. The vascular wall undergoes remarkable extracellular matrix remodeling exhibiting elastin fibers and even inner elastic lamina within six months. Taken together, the results suggest that VEGF‐based A‐TEVs may be suitable for treatment of congenital heart disorders to alleviate the need for repeated surgeries, which are currently standard practice.
Cell‐free vascular grafts containing immobilized vascular endothelial growth factor are implanted into the arterial system of neonatal lambs, where they remain patent, undergo significant remodeling, and grow with the animal host in length and diameter. Successful size expansion, integration into the native vasculature, and development of vascular function may provide off‐the‐shelf bioengineered arteries for the treatment of congenital heart defects.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202005769</identifier><identifier>PMID: 33551712</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arteries ; Calcification ; cardiovascular regeneration ; decellularized extracellular matrix ; Elastin ; Endothelium ; Growth factors ; Heparin ; Materials science ; Muscles ; pediatric congenital heart disease ; Vascular endothelial growth factor ; vascular tissue engineering ; VEGF</subject><ispartof>Advanced functional materials, 2020-11, Vol.30 (48), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-84df4a92ccaf394b18f206146c9faeec41b1adda46ec6b2d52e9f25bf7a6349a3</citedby><cites>FETCH-LOGICAL-c5059-84df4a92ccaf394b18f206146c9faeec41b1adda46ec6b2d52e9f25bf7a6349a3</cites><orcidid>0000-0001-9885-0457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202005769$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202005769$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33551712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nasiri, Bita</creatorcontrib><creatorcontrib>Row, Sindhu</creatorcontrib><creatorcontrib>Smith, Randall J.</creatorcontrib><creatorcontrib>Swartz, Daniel D.</creatorcontrib><creatorcontrib>Andreadis, Stelios T.</creatorcontrib><title>Cell‐Free Vascular Grafts That Grow with the Host</title><title>Advanced functional materials</title><addtitle>Adv Funct Mater</addtitle><description>Cell‐free small diameter vascular grafts, based on small intestinal submucosa functionalized with heparin and vascular endothelial growth factor (VEGF) are manufactured and implanted successfully into the arterial system of neonatal lambs, where they remain patent and grow in size with the host to a similar extent and with similar rate as native arteries. Acellular tissue engineered vessels (A‐TEVs) integrate seamlessly into the native vasculature and develop confluent, functional endothelium that affords patency. The medial layer is infiltrated by smooth muscle cells, shows no signs of calcification, and develops contractile function. The vascular wall undergoes remarkable extracellular matrix remodeling exhibiting elastin fibers and even inner elastic lamina within six months. Taken together, the results suggest that VEGF‐based A‐TEVs may be suitable for treatment of congenital heart disorders to alleviate the need for repeated surgeries, which are currently standard practice.
Cell‐free vascular grafts containing immobilized vascular endothelial growth factor are implanted into the arterial system of neonatal lambs, where they remain patent, undergo significant remodeling, and grow with the animal host in length and diameter. Successful size expansion, integration into the native vasculature, and development of vascular function may provide off‐the‐shelf bioengineered arteries for the treatment of congenital heart defects.</description><subject>Arteries</subject><subject>Calcification</subject><subject>cardiovascular regeneration</subject><subject>decellularized extracellular matrix</subject><subject>Elastin</subject><subject>Endothelium</subject><subject>Growth factors</subject><subject>Heparin</subject><subject>Materials science</subject><subject>Muscles</subject><subject>pediatric congenital heart disease</subject><subject>Vascular endothelial growth factor</subject><subject>vascular tissue engineering</subject><subject>VEGF</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMo3rcuZcCNm9bcM9kIUq0KihsVd-FMJrEj044mM5bufASf0ScxUq2XjascyHc-zs-P0A7BfYIxPYDSj_sUU4yFknoJrRNJZI9hmi8vZnK3hjZifMCYKMX4KlpjTAiiCF1HbODq-u3ldRicy24h2q6GkJ0G8G3MrkfQprmZZtOqHWXtyGVnTWy30IqHOrrtz3cT3QxPrgdnvYur0_PB0UXPCix0L-el56CpteCZ5gXJPcWScGm1B-csJwWBsgQunZUFLQV12lNReAWScQ1sEx3OvY9dMXaldZM2QG0eQzWGMDMNVOb3z6Qamfvm2ahcKK5wEux_CkLz1LnYmnEVbQoME9d00VCeK84YUyyhe3_Qh6YLkxQvUZJpJkieJ6o_p2xoYgzOL44h2Hz0YT76MIs-0sLuzwgL_KuABOg5MK1qN_tHZ46Oh5ff8neZW5fP</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nasiri, Bita</creator><creator>Row, Sindhu</creator><creator>Smith, Randall J.</creator><creator>Swartz, Daniel D.</creator><creator>Andreadis, Stelios T.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9885-0457</orcidid></search><sort><creationdate>20201101</creationdate><title>Cell‐Free Vascular Grafts That Grow with the Host</title><author>Nasiri, Bita ; Row, Sindhu ; Smith, Randall J. ; Swartz, Daniel D. ; Andreadis, Stelios T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-84df4a92ccaf394b18f206146c9faeec41b1adda46ec6b2d52e9f25bf7a6349a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arteries</topic><topic>Calcification</topic><topic>cardiovascular regeneration</topic><topic>decellularized extracellular matrix</topic><topic>Elastin</topic><topic>Endothelium</topic><topic>Growth factors</topic><topic>Heparin</topic><topic>Materials science</topic><topic>Muscles</topic><topic>pediatric congenital heart disease</topic><topic>Vascular endothelial growth factor</topic><topic>vascular tissue engineering</topic><topic>VEGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasiri, Bita</creatorcontrib><creatorcontrib>Row, Sindhu</creatorcontrib><creatorcontrib>Smith, Randall J.</creatorcontrib><creatorcontrib>Swartz, Daniel D.</creatorcontrib><creatorcontrib>Andreadis, Stelios T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasiri, Bita</au><au>Row, Sindhu</au><au>Smith, Randall J.</au><au>Swartz, Daniel D.</au><au>Andreadis, Stelios T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell‐Free Vascular Grafts That Grow with the Host</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv Funct Mater</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Cell‐free small diameter vascular grafts, based on small intestinal submucosa functionalized with heparin and vascular endothelial growth factor (VEGF) are manufactured and implanted successfully into the arterial system of neonatal lambs, where they remain patent and grow in size with the host to a similar extent and with similar rate as native arteries. Acellular tissue engineered vessels (A‐TEVs) integrate seamlessly into the native vasculature and develop confluent, functional endothelium that affords patency. The medial layer is infiltrated by smooth muscle cells, shows no signs of calcification, and develops contractile function. The vascular wall undergoes remarkable extracellular matrix remodeling exhibiting elastin fibers and even inner elastic lamina within six months. Taken together, the results suggest that VEGF‐based A‐TEVs may be suitable for treatment of congenital heart disorders to alleviate the need for repeated surgeries, which are currently standard practice.
Cell‐free vascular grafts containing immobilized vascular endothelial growth factor are implanted into the arterial system of neonatal lambs, where they remain patent, undergo significant remodeling, and grow with the animal host in length and diameter. Successful size expansion, integration into the native vasculature, and development of vascular function may provide off‐the‐shelf bioengineered arteries for the treatment of congenital heart defects.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33551712</pmid><doi>10.1002/adfm.202005769</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9885-0457</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-11, Vol.30 (48), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857470 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Arteries Calcification cardiovascular regeneration decellularized extracellular matrix Elastin Endothelium Growth factors Heparin Materials science Muscles pediatric congenital heart disease Vascular endothelial growth factor vascular tissue engineering VEGF |
title | Cell‐Free Vascular Grafts That Grow with the Host |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%E2%80%90Free%20Vascular%20Grafts%20That%20Grow%20with%20the%20Host&rft.jtitle=Advanced%20functional%20materials&rft.au=Nasiri,%20Bita&rft.date=2020-11-01&rft.volume=30&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202005769&rft_dat=%3Cproquest_pubme%3E2463935188%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463935188&rft_id=info:pmid/33551712&rfr_iscdi=true |