A review on medical imaging synthesis using deep learning and its clinical applications

This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied clinical medical physics 2021-01, Vol.22 (1), p.11-36
Hauptverfasser: Wang, Tonghe, Lei, Yang, Fu, Yabo, Wynne, Jacob F., Curran, Walter J., Liu, Tian, Yang, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 11
container_title Journal of applied clinical medical physics
container_volume 22
creator Wang, Tonghe
Lei, Yang
Fu, Yabo
Wynne, Jacob F.
Curran, Walter J.
Liu, Tian
Yang, Xiaofeng
description This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.
doi_str_mv 10.1002/acm2.13121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7856512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485385579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS3UqlDohQ9QWeJSIS34TxzbF6TVqrSVqLi04mg5zmQx8jqpnYD229dhKQIOPc2M_JunN34IHVNyRglh59Zt2BnllNE9dEAFqxda0-rdi34ffcz5jhBKFVcf0D7nnAjB1QG6WeIE9x4ecB_xBlrvbMB-Y9c-rnHexvEWss94yvPcAgw4gE1xnmxssR8zdsHHxzU7DKE0o-9jPkLvOxsyfHqqh-j35ddfq--Lq-tvP1bLq4UTFaOL1nakqTslubRNY3WlapBMUsaZ6lzbSMu5bLWtHQOhtZZ13dYVBWU1ryxj_BBd7HSHqSn2HcQx2WCGVG5IW9Nbb16_RH9r1v29kUrUgs4CX54EUv9ngjyajc8OQrAR-ikbVileEUUqXtCTN-hdP6VYzpup8p1CSF2o0x3lUp9zgu7ZDCVmzsvMeZnHvAr8-aX9Z_RfQAWgO-DBB9j-R8osVz_ZTvQvUNef6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485385579</pqid></control><display><type>article</type><title>A review on medical imaging synthesis using deep learning and its clinical applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Wang, Tonghe ; Lei, Yang ; Fu, Yabo ; Wynne, Jacob F. ; Curran, Walter J. ; Liu, Tian ; Yang, Xiaofeng</creator><creatorcontrib>Wang, Tonghe ; Lei, Yang ; Fu, Yabo ; Wynne, Jacob F. ; Curran, Walter J. ; Liu, Tian ; Yang, Xiaofeng</creatorcontrib><description>This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1002/acm2.13121</identifier><identifier>PMID: 33305538</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Artificial intelligence ; Deep Learning ; Diagnostic Imaging ; Humans ; Image Processing, Computer-Assisted ; image synthesis ; Machine learning ; Magnetic resonance imaging ; Mapping ; Medical imaging ; MRI ; Neural networks ; PET ; Radiation therapy ; Radiography ; Research Design ; Review</subject><ispartof>Journal of applied clinical medical physics, 2021-01, Vol.22 (1), p.11-36</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.</rights><rights>2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</citedby><cites>FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33305538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tonghe</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Fu, Yabo</creatorcontrib><creatorcontrib>Wynne, Jacob F.</creatorcontrib><creatorcontrib>Curran, Walter J.</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><title>A review on medical imaging synthesis using deep learning and its clinical applications</title><title>Journal of applied clinical medical physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.</description><subject>Artificial intelligence</subject><subject>Deep Learning</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>image synthesis</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>Neural networks</subject><subject>PET</subject><subject>Radiation therapy</subject><subject>Radiography</subject><subject>Research Design</subject><subject>Review</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxS3UqlDohQ9QWeJSIS34TxzbF6TVqrSVqLi04mg5zmQx8jqpnYD229dhKQIOPc2M_JunN34IHVNyRglh59Zt2BnllNE9dEAFqxda0-rdi34ffcz5jhBKFVcf0D7nnAjB1QG6WeIE9x4ecB_xBlrvbMB-Y9c-rnHexvEWss94yvPcAgw4gE1xnmxssR8zdsHHxzU7DKE0o-9jPkLvOxsyfHqqh-j35ddfq--Lq-tvP1bLq4UTFaOL1nakqTslubRNY3WlapBMUsaZ6lzbSMu5bLWtHQOhtZZ13dYVBWU1ryxj_BBd7HSHqSn2HcQx2WCGVG5IW9Nbb16_RH9r1v29kUrUgs4CX54EUv9ngjyajc8OQrAR-ikbVileEUUqXtCTN-hdP6VYzpup8p1CSF2o0x3lUp9zgu7ZDCVmzsvMeZnHvAr8-aX9Z_RfQAWgO-DBB9j-R8osVz_ZTvQvUNef6Q</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Wang, Tonghe</creator><creator>Lei, Yang</creator><creator>Fu, Yabo</creator><creator>Wynne, Jacob F.</creator><creator>Curran, Walter J.</creator><creator>Liu, Tian</creator><creator>Yang, Xiaofeng</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202101</creationdate><title>A review on medical imaging synthesis using deep learning and its clinical applications</title><author>Wang, Tonghe ; Lei, Yang ; Fu, Yabo ; Wynne, Jacob F. ; Curran, Walter J. ; Liu, Tian ; Yang, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Deep Learning</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>image synthesis</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>Neural networks</topic><topic>PET</topic><topic>Radiation therapy</topic><topic>Radiography</topic><topic>Research Design</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tonghe</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Fu, Yabo</creatorcontrib><creatorcontrib>Wynne, Jacob F.</creatorcontrib><creatorcontrib>Curran, Walter J.</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied clinical medical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tonghe</au><au>Lei, Yang</au><au>Fu, Yabo</au><au>Wynne, Jacob F.</au><au>Curran, Walter J.</au><au>Liu, Tian</au><au>Yang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on medical imaging synthesis using deep learning and its clinical applications</atitle><jtitle>Journal of applied clinical medical physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2021-01</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>11</spage><epage>36</epage><pages>11-36</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33305538</pmid><doi>10.1002/acm2.13121</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-9914
ispartof Journal of applied clinical medical physics, 2021-01, Vol.22 (1), p.11-36
issn 1526-9914
1526-9914
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7856512
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Artificial intelligence
Deep Learning
Diagnostic Imaging
Humans
Image Processing, Computer-Assisted
image synthesis
Machine learning
Magnetic resonance imaging
Mapping
Medical imaging
MRI
Neural networks
PET
Radiation therapy
Radiography
Research Design
Review
title A review on medical imaging synthesis using deep learning and its clinical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20medical%20imaging%20synthesis%20using%20deep%20learning%20and%20its%20clinical%20applications&rft.jtitle=Journal%20of%20applied%20clinical%20medical%20physics&rft.au=Wang,%20Tonghe&rft.date=2021-01&rft.volume=22&rft.issue=1&rft.spage=11&rft.epage=36&rft.pages=11-36&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1002/acm2.13121&rft_dat=%3Cproquest_pubme%3E2485385579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485385579&rft_id=info:pmid/33305538&rfr_iscdi=true