A review on medical imaging synthesis using deep learning and its clinical applications
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study desi...
Gespeichert in:
Veröffentlicht in: | Journal of applied clinical medical physics 2021-01, Vol.22 (1), p.11-36 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of applied clinical medical physics |
container_volume | 22 |
creator | Wang, Tonghe Lei, Yang Fu, Yabo Wynne, Jacob F. Curran, Walter J. Liu, Tian Yang, Xiaofeng |
description | This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion. |
doi_str_mv | 10.1002/acm2.13121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7856512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485385579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS3UqlDohQ9QWeJSIS34TxzbF6TVqrSVqLi04mg5zmQx8jqpnYD229dhKQIOPc2M_JunN34IHVNyRglh59Zt2BnllNE9dEAFqxda0-rdi34ffcz5jhBKFVcf0D7nnAjB1QG6WeIE9x4ecB_xBlrvbMB-Y9c-rnHexvEWss94yvPcAgw4gE1xnmxssR8zdsHHxzU7DKE0o-9jPkLvOxsyfHqqh-j35ddfq--Lq-tvP1bLq4UTFaOL1nakqTslubRNY3WlapBMUsaZ6lzbSMu5bLWtHQOhtZZ13dYVBWU1ryxj_BBd7HSHqSn2HcQx2WCGVG5IW9Nbb16_RH9r1v29kUrUgs4CX54EUv9ngjyajc8OQrAR-ikbVileEUUqXtCTN-hdP6VYzpup8p1CSF2o0x3lUp9zgu7ZDCVmzsvMeZnHvAr8-aX9Z_RfQAWgO-DBB9j-R8osVz_ZTvQvUNef6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485385579</pqid></control><display><type>article</type><title>A review on medical imaging synthesis using deep learning and its clinical applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Wang, Tonghe ; Lei, Yang ; Fu, Yabo ; Wynne, Jacob F. ; Curran, Walter J. ; Liu, Tian ; Yang, Xiaofeng</creator><creatorcontrib>Wang, Tonghe ; Lei, Yang ; Fu, Yabo ; Wynne, Jacob F. ; Curran, Walter J. ; Liu, Tian ; Yang, Xiaofeng</creatorcontrib><description>This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1002/acm2.13121</identifier><identifier>PMID: 33305538</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Artificial intelligence ; Deep Learning ; Diagnostic Imaging ; Humans ; Image Processing, Computer-Assisted ; image synthesis ; Machine learning ; Magnetic resonance imaging ; Mapping ; Medical imaging ; MRI ; Neural networks ; PET ; Radiation therapy ; Radiography ; Research Design ; Review</subject><ispartof>Journal of applied clinical medical physics, 2021-01, Vol.22 (1), p.11-36</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.</rights><rights>2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</citedby><cites>FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33305538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tonghe</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Fu, Yabo</creatorcontrib><creatorcontrib>Wynne, Jacob F.</creatorcontrib><creatorcontrib>Curran, Walter J.</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><title>A review on medical imaging synthesis using deep learning and its clinical applications</title><title>Journal of applied clinical medical physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.</description><subject>Artificial intelligence</subject><subject>Deep Learning</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>image synthesis</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>Neural networks</subject><subject>PET</subject><subject>Radiation therapy</subject><subject>Radiography</subject><subject>Research Design</subject><subject>Review</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxS3UqlDohQ9QWeJSIS34TxzbF6TVqrSVqLi04mg5zmQx8jqpnYD229dhKQIOPc2M_JunN34IHVNyRglh59Zt2BnllNE9dEAFqxda0-rdi34ffcz5jhBKFVcf0D7nnAjB1QG6WeIE9x4ecB_xBlrvbMB-Y9c-rnHexvEWss94yvPcAgw4gE1xnmxssR8zdsHHxzU7DKE0o-9jPkLvOxsyfHqqh-j35ddfq--Lq-tvP1bLq4UTFaOL1nakqTslubRNY3WlapBMUsaZ6lzbSMu5bLWtHQOhtZZ13dYVBWU1ryxj_BBd7HSHqSn2HcQx2WCGVG5IW9Nbb16_RH9r1v29kUrUgs4CX54EUv9ngjyajc8OQrAR-ikbVileEUUqXtCTN-hdP6VYzpup8p1CSF2o0x3lUp9zgu7ZDCVmzsvMeZnHvAr8-aX9Z_RfQAWgO-DBB9j-R8osVz_ZTvQvUNef6Q</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Wang, Tonghe</creator><creator>Lei, Yang</creator><creator>Fu, Yabo</creator><creator>Wynne, Jacob F.</creator><creator>Curran, Walter J.</creator><creator>Liu, Tian</creator><creator>Yang, Xiaofeng</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202101</creationdate><title>A review on medical imaging synthesis using deep learning and its clinical applications</title><author>Wang, Tonghe ; Lei, Yang ; Fu, Yabo ; Wynne, Jacob F. ; Curran, Walter J. ; Liu, Tian ; Yang, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5421-daf0b6f8737abba9486e72712328fcdb7a337d9a6c2e5999766d641e8a934a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Deep Learning</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>image synthesis</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>Neural networks</topic><topic>PET</topic><topic>Radiation therapy</topic><topic>Radiography</topic><topic>Research Design</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tonghe</creatorcontrib><creatorcontrib>Lei, Yang</creatorcontrib><creatorcontrib>Fu, Yabo</creatorcontrib><creatorcontrib>Wynne, Jacob F.</creatorcontrib><creatorcontrib>Curran, Walter J.</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied clinical medical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tonghe</au><au>Lei, Yang</au><au>Fu, Yabo</au><au>Wynne, Jacob F.</au><au>Curran, Walter J.</au><au>Liu, Tian</au><au>Yang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on medical imaging synthesis using deep learning and its clinical applications</atitle><jtitle>Journal of applied clinical medical physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2021-01</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>11</spage><epage>36</epage><pages>11-36</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>This paper reviewed the deep learning‐based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>33305538</pmid><doi>10.1002/acm2.13121</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-9914 |
ispartof | Journal of applied clinical medical physics, 2021-01, Vol.22 (1), p.11-36 |
issn | 1526-9914 1526-9914 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7856512 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Artificial intelligence Deep Learning Diagnostic Imaging Humans Image Processing, Computer-Assisted image synthesis Machine learning Magnetic resonance imaging Mapping Medical imaging MRI Neural networks PET Radiation therapy Radiography Research Design Review |
title | A review on medical imaging synthesis using deep learning and its clinical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20medical%20imaging%20synthesis%20using%20deep%20learning%20and%20its%20clinical%20applications&rft.jtitle=Journal%20of%20applied%20clinical%20medical%20physics&rft.au=Wang,%20Tonghe&rft.date=2021-01&rft.volume=22&rft.issue=1&rft.spage=11&rft.epage=36&rft.pages=11-36&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1002/acm2.13121&rft_dat=%3Cproquest_pubme%3E2485385579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485385579&rft_id=info:pmid/33305538&rfr_iscdi=true |