Initial testing of pegfilgrastim (Neulasta Onpro) on‐body injector in multiple radiological imaging environments
Purpose An increasing number of implantable or external devices can impact whether patients can receive radiological imaging examinations. This study examines and tests the Neulasta (pegfilgrastim) Onpro on‐body injector in multiple imaging environments. Methods The injector was analyzed for four im...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Clinical Medical Physics 2021-01, Vol.22 (1), p.343-349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
An increasing number of implantable or external devices can impact whether patients can receive radiological imaging examinations. This study examines and tests the Neulasta (pegfilgrastim) Onpro on‐body injector in multiple imaging environments.
Methods
The injector was analyzed for four imaging modalities with testing protocols and strategies developed for each modality. In x‐ray and computed tomography (CT), scans with much higher exposure than clinical protocols were performed with the device attached to an anthropomorphic phantom. The device was monitored until the completion of drug delivery. For magnetic resonance imaging (MRI), the device was assessed using a hand‐held magnet and underwent the magnetically induced displacement testing in a 1.5T clinical MRI scanner room. For ultrasound, magnetic field changes were measured around an ultrasound scanner system with three transducers.
Results
For x‐ray and CT no sign of device error was identified during or after the high radiation exposure scans. Drug delivery was completed at expected timing with expected volume. For MRI the device showed significant attractive force towards the hand‐held magnet and a 50‐degree deflection angle at 50 cm from the opening of the scanner bore. No further assessment from the gradient or radiofrequency field was deemed necessary. For ultrasound the maximum magnetic field change from baseline was measured to be +11.7 μT in comparison to +74.2 μT at 4 inches from a working microwave.
Conclusions
No device performance issue was identified under the extreme test conditions in x‐ray or CT. The device was found to be MR Unsafe. Magnetic field changes around an ultrasound system met the limitation set by manufacture. Patient ultrasound scanning is considered safe as long as the transducers do not inadvertently loosen the device. |
---|---|
ISSN: | 1526-9914 1526-9914 |
DOI: | 10.1002/acm2.13156 |