Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation

Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-02, Vol.20 (2), p.260-271
Hauptverfasser: Lawlor, Kynan T., Vanslambrouck, Jessica M., Higgins, J. William, Chambon, Alison, Bishard, Kristina, Arndt, Derek, Er, Pei Xuan, Wilson, Sean B., Howden, Sara E., Tan, Ker Sin, Li, Fanyi, Hale, Lorna J., Shepherd, Benjamin, Pentoney, Stephen, Presnell, Sharon C., Chen, Alice E., Little, Melissa H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 2
container_start_page 260
container_title Nature materials
container_volume 20
creator Lawlor, Kynan T.
Vanslambrouck, Jessica M.
Higgins, J. William
Chambon, Alison
Bishard, Kristina
Arndt, Derek
Er, Pei Xuan
Wilson, Sean B.
Howden, Sara E.
Tan, Ker Sin
Li, Fanyi
Hale, Lorna J.
Shepherd, Benjamin
Pentoney, Stephen
Presnell, Sharon C.
Chen, Alice E.
Little, Melissa H.
description Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue. Extrusion-based bioprinting has been shown to rapidly and reproducibly generate kidney organoids from a cell-only paste, with the number and maturation of functional units within the kidney tissue capable of being further improved by bioprinting tissue sheets.
doi_str_mv 10.1038/s41563-020-00853-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7855371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464143235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-23c34943a1dca7ce33102a431831c0d43be50f62c3f3a96a69b4b75145d06a1f3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq2Kqnz1D3CoInHhEurx2E5yQUIrSpGQuIDEzXIcZzFN7K2doO6_r-luaeHAyZbmmdeeeQg5AnoKFOuviYOQWFJGS0prgWXzgewBr2TJpaQ72zsAY7tkP6VHShkIIT-RXUSGFJncI_cLOwzzoGNhf01xTi74onVhFZ2fnF8WblzF8GRT8cN13q6LEJfaB9cV0eZCNxvXusFN60L7rjDB9yGOesoph-Rjr4dkP2_PA3L37eJ28b28vrm8Wpxfl0Y09VQyNMgbjho6oytjEYEyzRFqBEM7jq0VtJfMYI-6kVo2LW8rAVx0VGro8YCcbXJXczvazlg_RT2oPMCo41oF7dTrincPahmeVFULgRXkgJNtQAw_Z5smNbpk8la0t2FOinHJgeeFiYwev0Efwxx9Hi9TNXBgVFSZYhvKxJBStP3LZ4CqZ3FqI05lceqPONXkpi__j_HS8tdUBnADpGc3Sxv_vf1O7G-Gw6Wi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481412057</pqid></control><display><type>article</type><title>Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lawlor, Kynan T. ; Vanslambrouck, Jessica M. ; Higgins, J. William ; Chambon, Alison ; Bishard, Kristina ; Arndt, Derek ; Er, Pei Xuan ; Wilson, Sean B. ; Howden, Sara E. ; Tan, Ker Sin ; Li, Fanyi ; Hale, Lorna J. ; Shepherd, Benjamin ; Pentoney, Stephen ; Presnell, Sharon C. ; Chen, Alice E. ; Little, Melissa H.</creator><creatorcontrib>Lawlor, Kynan T. ; Vanslambrouck, Jessica M. ; Higgins, J. William ; Chambon, Alison ; Bishard, Kristina ; Arndt, Derek ; Er, Pei Xuan ; Wilson, Sean B. ; Howden, Sara E. ; Tan, Ker Sin ; Li, Fanyi ; Hale, Lorna J. ; Shepherd, Benjamin ; Pentoney, Stephen ; Presnell, Sharon C. ; Chen, Alice E. ; Little, Melissa H.</creatorcontrib><description>Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue. Extrusion-based bioprinting has been shown to rapidly and reproducibly generate kidney organoids from a cell-only paste, with the number and maturation of functional units within the kidney tissue capable of being further improved by bioprinting tissue sheets.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-00853-9</identifier><identifier>PMID: 33230326</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/83 ; 639/166/985 ; 639/301/54/2295 ; 692/308/2171 ; Aminoglycosides ; Automation ; Biocompatibility ; Biomaterials ; Bioprinting ; Chemistry and Materials Science ; Condensed Matter Physics ; Extrusion ; Gene expression ; Genetic engineering ; Humans ; Hydrogels ; In vivo methods and tests ; Kidney Tubules, Proximal - cytology ; Kidney Tubules, Proximal - metabolism ; Kidneys ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Organoids - cytology ; Organoids - metabolism ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Quality control ; Reproducibility ; Sheets ; Stem cells ; Three dimensional printing ; Tissue engineering ; Tissues ; Toxicity</subject><ispartof>Nature materials, 2021-02, Vol.20 (2), p.260-271</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-23c34943a1dca7ce33102a431831c0d43be50f62c3f3a96a69b4b75145d06a1f3</citedby><cites>FETCH-LOGICAL-c598t-23c34943a1dca7ce33102a431831c0d43be50f62c3f3a96a69b4b75145d06a1f3</cites><orcidid>0000-0003-0380-2263 ; 0000-0003-4080-5439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27925,27926</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33230326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawlor, Kynan T.</creatorcontrib><creatorcontrib>Vanslambrouck, Jessica M.</creatorcontrib><creatorcontrib>Higgins, J. William</creatorcontrib><creatorcontrib>Chambon, Alison</creatorcontrib><creatorcontrib>Bishard, Kristina</creatorcontrib><creatorcontrib>Arndt, Derek</creatorcontrib><creatorcontrib>Er, Pei Xuan</creatorcontrib><creatorcontrib>Wilson, Sean B.</creatorcontrib><creatorcontrib>Howden, Sara E.</creatorcontrib><creatorcontrib>Tan, Ker Sin</creatorcontrib><creatorcontrib>Li, Fanyi</creatorcontrib><creatorcontrib>Hale, Lorna J.</creatorcontrib><creatorcontrib>Shepherd, Benjamin</creatorcontrib><creatorcontrib>Pentoney, Stephen</creatorcontrib><creatorcontrib>Presnell, Sharon C.</creatorcontrib><creatorcontrib>Chen, Alice E.</creatorcontrib><creatorcontrib>Little, Melissa H.</creatorcontrib><title>Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue. Extrusion-based bioprinting has been shown to rapidly and reproducibly generate kidney organoids from a cell-only paste, with the number and maturation of functional units within the kidney tissue capable of being further improved by bioprinting tissue sheets.</description><subject>631/80/83</subject><subject>639/166/985</subject><subject>639/301/54/2295</subject><subject>692/308/2171</subject><subject>Aminoglycosides</subject><subject>Automation</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Bioprinting</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Extrusion</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>In vivo methods and tests</subject><subject>Kidney Tubules, Proximal - cytology</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Kidneys</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organoids - cytology</subject><subject>Organoids - metabolism</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Quality control</subject><subject>Reproducibility</subject><subject>Sheets</subject><subject>Stem cells</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>Toxicity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhq2Kqnz1D3CoInHhEurx2E5yQUIrSpGQuIDEzXIcZzFN7K2doO6_r-luaeHAyZbmmdeeeQg5AnoKFOuviYOQWFJGS0prgWXzgewBr2TJpaQ72zsAY7tkP6VHShkIIT-RXUSGFJncI_cLOwzzoGNhf01xTi74onVhFZ2fnF8WblzF8GRT8cN13q6LEJfaB9cV0eZCNxvXusFN60L7rjDB9yGOesoph-Rjr4dkP2_PA3L37eJ28b28vrm8Wpxfl0Y09VQyNMgbjho6oytjEYEyzRFqBEM7jq0VtJfMYI-6kVo2LW8rAVx0VGro8YCcbXJXczvazlg_RT2oPMCo41oF7dTrincPahmeVFULgRXkgJNtQAw_Z5smNbpk8la0t2FOinHJgeeFiYwev0Efwxx9Hi9TNXBgVFSZYhvKxJBStP3LZ4CqZ3FqI05lceqPONXkpi__j_HS8tdUBnADpGc3Sxv_vf1O7G-Gw6Wi</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lawlor, Kynan T.</creator><creator>Vanslambrouck, Jessica M.</creator><creator>Higgins, J. William</creator><creator>Chambon, Alison</creator><creator>Bishard, Kristina</creator><creator>Arndt, Derek</creator><creator>Er, Pei Xuan</creator><creator>Wilson, Sean B.</creator><creator>Howden, Sara E.</creator><creator>Tan, Ker Sin</creator><creator>Li, Fanyi</creator><creator>Hale, Lorna J.</creator><creator>Shepherd, Benjamin</creator><creator>Pentoney, Stephen</creator><creator>Presnell, Sharon C.</creator><creator>Chen, Alice E.</creator><creator>Little, Melissa H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0380-2263</orcidid><orcidid>https://orcid.org/0000-0003-4080-5439</orcidid></search><sort><creationdate>20210201</creationdate><title>Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation</title><author>Lawlor, Kynan T. ; Vanslambrouck, Jessica M. ; Higgins, J. William ; Chambon, Alison ; Bishard, Kristina ; Arndt, Derek ; Er, Pei Xuan ; Wilson, Sean B. ; Howden, Sara E. ; Tan, Ker Sin ; Li, Fanyi ; Hale, Lorna J. ; Shepherd, Benjamin ; Pentoney, Stephen ; Presnell, Sharon C. ; Chen, Alice E. ; Little, Melissa H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-23c34943a1dca7ce33102a431831c0d43be50f62c3f3a96a69b4b75145d06a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/80/83</topic><topic>639/166/985</topic><topic>639/301/54/2295</topic><topic>692/308/2171</topic><topic>Aminoglycosides</topic><topic>Automation</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Bioprinting</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Extrusion</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>In vivo methods and tests</topic><topic>Kidney Tubules, Proximal - cytology</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Kidneys</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organoids - cytology</topic><topic>Organoids - metabolism</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Quality control</topic><topic>Reproducibility</topic><topic>Sheets</topic><topic>Stem cells</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawlor, Kynan T.</creatorcontrib><creatorcontrib>Vanslambrouck, Jessica M.</creatorcontrib><creatorcontrib>Higgins, J. William</creatorcontrib><creatorcontrib>Chambon, Alison</creatorcontrib><creatorcontrib>Bishard, Kristina</creatorcontrib><creatorcontrib>Arndt, Derek</creatorcontrib><creatorcontrib>Er, Pei Xuan</creatorcontrib><creatorcontrib>Wilson, Sean B.</creatorcontrib><creatorcontrib>Howden, Sara E.</creatorcontrib><creatorcontrib>Tan, Ker Sin</creatorcontrib><creatorcontrib>Li, Fanyi</creatorcontrib><creatorcontrib>Hale, Lorna J.</creatorcontrib><creatorcontrib>Shepherd, Benjamin</creatorcontrib><creatorcontrib>Pentoney, Stephen</creatorcontrib><creatorcontrib>Presnell, Sharon C.</creatorcontrib><creatorcontrib>Chen, Alice E.</creatorcontrib><creatorcontrib>Little, Melissa H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawlor, Kynan T.</au><au>Vanslambrouck, Jessica M.</au><au>Higgins, J. William</au><au>Chambon, Alison</au><au>Bishard, Kristina</au><au>Arndt, Derek</au><au>Er, Pei Xuan</au><au>Wilson, Sean B.</au><au>Howden, Sara E.</au><au>Tan, Ker Sin</au><au>Li, Fanyi</au><au>Hale, Lorna J.</au><au>Shepherd, Benjamin</au><au>Pentoney, Stephen</au><au>Presnell, Sharon C.</au><au>Chen, Alice E.</au><au>Little, Melissa H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>20</volume><issue>2</issue><spage>260</spage><epage>271</epage><pages>260-271</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue. Extrusion-based bioprinting has been shown to rapidly and reproducibly generate kidney organoids from a cell-only paste, with the number and maturation of functional units within the kidney tissue capable of being further improved by bioprinting tissue sheets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33230326</pmid><doi>10.1038/s41563-020-00853-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0380-2263</orcidid><orcidid>https://orcid.org/0000-0003-4080-5439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-02, Vol.20 (2), p.260-271
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7855371
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/80/83
639/166/985
639/301/54/2295
692/308/2171
Aminoglycosides
Automation
Biocompatibility
Biomaterials
Bioprinting
Chemistry and Materials Science
Condensed Matter Physics
Extrusion
Gene expression
Genetic engineering
Humans
Hydrogels
In vivo methods and tests
Kidney Tubules, Proximal - cytology
Kidney Tubules, Proximal - metabolism
Kidneys
Materials Science
Nanotechnology
Optical and Electronic Materials
Organoids - cytology
Organoids - metabolism
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Quality control
Reproducibility
Sheets
Stem cells
Three dimensional printing
Tissue engineering
Tissues
Toxicity
title Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20extrusion%20bioprinting%20improves%20kidney%20organoid%20reproducibility%20and%20conformation&rft.jtitle=Nature%20materials&rft.au=Lawlor,%20Kynan%20T.&rft.date=2021-02-01&rft.volume=20&rft.issue=2&rft.spage=260&rft.epage=271&rft.pages=260-271&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-00853-9&rft_dat=%3Cproquest_pubme%3E2464143235%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481412057&rft_id=info:pmid/33230326&rfr_iscdi=true