Automated operative phase identification in peroral endoscopic myotomy
Background Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic...
Gespeichert in:
Veröffentlicht in: | Surgical endoscopy 2021-07, Vol.35 (7), p.4008-4015 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4015 |
---|---|
container_issue | 7 |
container_start_page | 4008 |
container_title | Surgical endoscopy |
container_volume | 35 |
creator | Ward, Thomas M. Hashimoto, Daniel A. Ban, Yutong Rattner, David W. Inoue, Haruhiro Lillemoe, Keith D. Rus, Daniela L. Rosman, Guy Meireles, Ozanan R. |
description | Background
Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM).
Methods
POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth.
Results
POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases.
Discussion
A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction. |
doi_str_mv | 10.1007/s00464-020-07833-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7854950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540007715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxYMo-rT9Al2UATfdTL35N0k2BZFqC4IbXYdMJqORN5MxmRHet_fWp7Z2IQQCub97cg6HkC8UvlMAdVIARCNqYFCD0pzXZoesqOCsZozqXbICw6FmyogDcljKPSBvqNwnB5wpBlSpFTk_XeY0uDl0VZpCdnN8DNV050qoYhfGOfbR42MaqzhWCKTs1lUYu1R8mqKvhk3C_c0nste7dQmfX-4jcnP-8_rsV315dfH77PSy9lLAXHMteq6kVsZr1krWaN53wriWmcZL17cQurZhvepp4E5LaPEYLqBBw5RxfkR-bHWnpR1C59EhGrJTjoPLG5tctO8nY7yzt-nRKi2FkYAC314EcnpYQpntEIsP67UbQ1qKZYJpaLikDaLH_6H3ackjxrMM02ADikqk2JbyOZWSQ_9mhoL9U5Pd1mSxJvtckzW49PXfGG8rr70gwLdAwdF4G_Lfvz-QfQKNWp3i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540007715</pqid></control><display><type>article</type><title>Automated operative phase identification in peroral endoscopic myotomy</title><source>Springer Online Journals Complete</source><creator>Ward, Thomas M. ; Hashimoto, Daniel A. ; Ban, Yutong ; Rattner, David W. ; Inoue, Haruhiro ; Lillemoe, Keith D. ; Rus, Daniela L. ; Rosman, Guy ; Meireles, Ozanan R.</creator><creatorcontrib>Ward, Thomas M. ; Hashimoto, Daniel A. ; Ban, Yutong ; Rattner, David W. ; Inoue, Haruhiro ; Lillemoe, Keith D. ; Rus, Daniela L. ; Rosman, Guy ; Meireles, Ozanan R.</creatorcontrib><description>Background
Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM).
Methods
POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth.
Results
POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases.
Discussion
A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.</description><identifier>ISSN: 0930-2794</identifier><identifier>EISSN: 1432-2218</identifier><identifier>DOI: 10.1007/s00464-020-07833-9</identifier><identifier>PMID: 32720177</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>2020 SAGES Poster ; Abdominal Surgery ; Accuracy ; Artificial intelligence ; Computer vision ; Deep learning ; Endoscopy ; Gastroenterology ; Gynecology ; Hepatology ; Laparoscopy ; Medicine ; Medicine & Public Health ; Proctology ; Surgery</subject><ispartof>Surgical endoscopy, 2021-07, Vol.35 (7), p.4008-4015</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</citedby><cites>FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</cites><orcidid>0000-0003-1965-8657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00464-020-07833-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00464-020-07833-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32720177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Thomas M.</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Ban, Yutong</creatorcontrib><creatorcontrib>Rattner, David W.</creatorcontrib><creatorcontrib>Inoue, Haruhiro</creatorcontrib><creatorcontrib>Lillemoe, Keith D.</creatorcontrib><creatorcontrib>Rus, Daniela L.</creatorcontrib><creatorcontrib>Rosman, Guy</creatorcontrib><creatorcontrib>Meireles, Ozanan R.</creatorcontrib><title>Automated operative phase identification in peroral endoscopic myotomy</title><title>Surgical endoscopy</title><addtitle>Surg Endosc</addtitle><addtitle>Surg Endosc</addtitle><description>Background
Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM).
Methods
POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth.
Results
POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases.
Discussion
A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.</description><subject>2020 SAGES Poster</subject><subject>Abdominal Surgery</subject><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Endoscopy</subject><subject>Gastroenterology</subject><subject>Gynecology</subject><subject>Hepatology</subject><subject>Laparoscopy</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Proctology</subject><subject>Surgery</subject><issn>0930-2794</issn><issn>1432-2218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9LHTEUxYMo-rT9Al2UATfdTL35N0k2BZFqC4IbXYdMJqORN5MxmRHet_fWp7Z2IQQCub97cg6HkC8UvlMAdVIARCNqYFCD0pzXZoesqOCsZozqXbICw6FmyogDcljKPSBvqNwnB5wpBlSpFTk_XeY0uDl0VZpCdnN8DNV050qoYhfGOfbR42MaqzhWCKTs1lUYu1R8mqKvhk3C_c0nste7dQmfX-4jcnP-8_rsV315dfH77PSy9lLAXHMteq6kVsZr1krWaN53wriWmcZL17cQurZhvepp4E5LaPEYLqBBw5RxfkR-bHWnpR1C59EhGrJTjoPLG5tctO8nY7yzt-nRKi2FkYAC314EcnpYQpntEIsP67UbQ1qKZYJpaLikDaLH_6H3ackjxrMM02ADikqk2JbyOZWSQ_9mhoL9U5Pd1mSxJvtckzW49PXfGG8rr70gwLdAwdF4G_Lfvz-QfQKNWp3i</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ward, Thomas M.</creator><creator>Hashimoto, Daniel A.</creator><creator>Ban, Yutong</creator><creator>Rattner, David W.</creator><creator>Inoue, Haruhiro</creator><creator>Lillemoe, Keith D.</creator><creator>Rus, Daniela L.</creator><creator>Rosman, Guy</creator><creator>Meireles, Ozanan R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1965-8657</orcidid></search><sort><creationdate>20210701</creationdate><title>Automated operative phase identification in peroral endoscopic myotomy</title><author>Ward, Thomas M. ; Hashimoto, Daniel A. ; Ban, Yutong ; Rattner, David W. ; Inoue, Haruhiro ; Lillemoe, Keith D. ; Rus, Daniela L. ; Rosman, Guy ; Meireles, Ozanan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2020 SAGES Poster</topic><topic>Abdominal Surgery</topic><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Endoscopy</topic><topic>Gastroenterology</topic><topic>Gynecology</topic><topic>Hepatology</topic><topic>Laparoscopy</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Proctology</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Thomas M.</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Ban, Yutong</creatorcontrib><creatorcontrib>Rattner, David W.</creatorcontrib><creatorcontrib>Inoue, Haruhiro</creatorcontrib><creatorcontrib>Lillemoe, Keith D.</creatorcontrib><creatorcontrib>Rus, Daniela L.</creatorcontrib><creatorcontrib>Rosman, Guy</creatorcontrib><creatorcontrib>Meireles, Ozanan R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Surgical endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Thomas M.</au><au>Hashimoto, Daniel A.</au><au>Ban, Yutong</au><au>Rattner, David W.</au><au>Inoue, Haruhiro</au><au>Lillemoe, Keith D.</au><au>Rus, Daniela L.</au><au>Rosman, Guy</au><au>Meireles, Ozanan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated operative phase identification in peroral endoscopic myotomy</atitle><jtitle>Surgical endoscopy</jtitle><stitle>Surg Endosc</stitle><addtitle>Surg Endosc</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>35</volume><issue>7</issue><spage>4008</spage><epage>4015</epage><pages>4008-4015</pages><issn>0930-2794</issn><eissn>1432-2218</eissn><abstract>Background
Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM).
Methods
POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth.
Results
POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases.
Discussion
A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32720177</pmid><doi>10.1007/s00464-020-07833-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1965-8657</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-2794 |
ispartof | Surgical endoscopy, 2021-07, Vol.35 (7), p.4008-4015 |
issn | 0930-2794 1432-2218 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7854950 |
source | Springer Online Journals Complete |
subjects | 2020 SAGES Poster Abdominal Surgery Accuracy Artificial intelligence Computer vision Deep learning Endoscopy Gastroenterology Gynecology Hepatology Laparoscopy Medicine Medicine & Public Health Proctology Surgery |
title | Automated operative phase identification in peroral endoscopic myotomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20operative%20phase%20identification%20in%20peroral%20endoscopic%20myotomy&rft.jtitle=Surgical%20endoscopy&rft.au=Ward,%20Thomas%20M.&rft.date=2021-07-01&rft.volume=35&rft.issue=7&rft.spage=4008&rft.epage=4015&rft.pages=4008-4015&rft.issn=0930-2794&rft.eissn=1432-2218&rft_id=info:doi/10.1007/s00464-020-07833-9&rft_dat=%3Cproquest_pubme%3E2540007715%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540007715&rft_id=info:pmid/32720177&rfr_iscdi=true |