Automated operative phase identification in peroral endoscopic myotomy

Background Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgical endoscopy 2021-07, Vol.35 (7), p.4008-4015
Hauptverfasser: Ward, Thomas M., Hashimoto, Daniel A., Ban, Yutong, Rattner, David W., Inoue, Haruhiro, Lillemoe, Keith D., Rus, Daniela L., Rosman, Guy, Meireles, Ozanan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4015
container_issue 7
container_start_page 4008
container_title Surgical endoscopy
container_volume 35
creator Ward, Thomas M.
Hashimoto, Daniel A.
Ban, Yutong
Rattner, David W.
Inoue, Haruhiro
Lillemoe, Keith D.
Rus, Daniela L.
Rosman, Guy
Meireles, Ozanan R.
description Background Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM). Methods POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth. Results POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases. Discussion A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.
doi_str_mv 10.1007/s00464-020-07833-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7854950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540007715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxYMo-rT9Al2UATfdTL35N0k2BZFqC4IbXYdMJqORN5MxmRHet_fWp7Z2IQQCub97cg6HkC8UvlMAdVIARCNqYFCD0pzXZoesqOCsZozqXbICw6FmyogDcljKPSBvqNwnB5wpBlSpFTk_XeY0uDl0VZpCdnN8DNV050qoYhfGOfbR42MaqzhWCKTs1lUYu1R8mqKvhk3C_c0nste7dQmfX-4jcnP-8_rsV315dfH77PSy9lLAXHMteq6kVsZr1krWaN53wriWmcZL17cQurZhvepp4E5LaPEYLqBBw5RxfkR-bHWnpR1C59EhGrJTjoPLG5tctO8nY7yzt-nRKi2FkYAC314EcnpYQpntEIsP67UbQ1qKZYJpaLikDaLH_6H3ackjxrMM02ADikqk2JbyOZWSQ_9mhoL9U5Pd1mSxJvtckzW49PXfGG8rr70gwLdAwdF4G_Lfvz-QfQKNWp3i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540007715</pqid></control><display><type>article</type><title>Automated operative phase identification in peroral endoscopic myotomy</title><source>Springer Online Journals Complete</source><creator>Ward, Thomas M. ; Hashimoto, Daniel A. ; Ban, Yutong ; Rattner, David W. ; Inoue, Haruhiro ; Lillemoe, Keith D. ; Rus, Daniela L. ; Rosman, Guy ; Meireles, Ozanan R.</creator><creatorcontrib>Ward, Thomas M. ; Hashimoto, Daniel A. ; Ban, Yutong ; Rattner, David W. ; Inoue, Haruhiro ; Lillemoe, Keith D. ; Rus, Daniela L. ; Rosman, Guy ; Meireles, Ozanan R.</creatorcontrib><description>Background Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM). Methods POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth. Results POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases. Discussion A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.</description><identifier>ISSN: 0930-2794</identifier><identifier>EISSN: 1432-2218</identifier><identifier>DOI: 10.1007/s00464-020-07833-9</identifier><identifier>PMID: 32720177</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>2020 SAGES Poster ; Abdominal Surgery ; Accuracy ; Artificial intelligence ; Computer vision ; Deep learning ; Endoscopy ; Gastroenterology ; Gynecology ; Hepatology ; Laparoscopy ; Medicine ; Medicine &amp; Public Health ; Proctology ; Surgery</subject><ispartof>Surgical endoscopy, 2021-07, Vol.35 (7), p.4008-4015</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</citedby><cites>FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</cites><orcidid>0000-0003-1965-8657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00464-020-07833-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00464-020-07833-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32720177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Thomas M.</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Ban, Yutong</creatorcontrib><creatorcontrib>Rattner, David W.</creatorcontrib><creatorcontrib>Inoue, Haruhiro</creatorcontrib><creatorcontrib>Lillemoe, Keith D.</creatorcontrib><creatorcontrib>Rus, Daniela L.</creatorcontrib><creatorcontrib>Rosman, Guy</creatorcontrib><creatorcontrib>Meireles, Ozanan R.</creatorcontrib><title>Automated operative phase identification in peroral endoscopic myotomy</title><title>Surgical endoscopy</title><addtitle>Surg Endosc</addtitle><addtitle>Surg Endosc</addtitle><description>Background Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM). Methods POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth. Results POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases. Discussion A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.</description><subject>2020 SAGES Poster</subject><subject>Abdominal Surgery</subject><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Endoscopy</subject><subject>Gastroenterology</subject><subject>Gynecology</subject><subject>Hepatology</subject><subject>Laparoscopy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Proctology</subject><subject>Surgery</subject><issn>0930-2794</issn><issn>1432-2218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9LHTEUxYMo-rT9Al2UATfdTL35N0k2BZFqC4IbXYdMJqORN5MxmRHet_fWp7Z2IQQCub97cg6HkC8UvlMAdVIARCNqYFCD0pzXZoesqOCsZozqXbICw6FmyogDcljKPSBvqNwnB5wpBlSpFTk_XeY0uDl0VZpCdnN8DNV050qoYhfGOfbR42MaqzhWCKTs1lUYu1R8mqKvhk3C_c0nste7dQmfX-4jcnP-8_rsV315dfH77PSy9lLAXHMteq6kVsZr1krWaN53wriWmcZL17cQurZhvepp4E5LaPEYLqBBw5RxfkR-bHWnpR1C59EhGrJTjoPLG5tctO8nY7yzt-nRKi2FkYAC314EcnpYQpntEIsP67UbQ1qKZYJpaLikDaLH_6H3ackjxrMM02ADikqk2JbyOZWSQ_9mhoL9U5Pd1mSxJvtckzW49PXfGG8rr70gwLdAwdF4G_Lfvz-QfQKNWp3i</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ward, Thomas M.</creator><creator>Hashimoto, Daniel A.</creator><creator>Ban, Yutong</creator><creator>Rattner, David W.</creator><creator>Inoue, Haruhiro</creator><creator>Lillemoe, Keith D.</creator><creator>Rus, Daniela L.</creator><creator>Rosman, Guy</creator><creator>Meireles, Ozanan R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1965-8657</orcidid></search><sort><creationdate>20210701</creationdate><title>Automated operative phase identification in peroral endoscopic myotomy</title><author>Ward, Thomas M. ; Hashimoto, Daniel A. ; Ban, Yutong ; Rattner, David W. ; Inoue, Haruhiro ; Lillemoe, Keith D. ; Rus, Daniela L. ; Rosman, Guy ; Meireles, Ozanan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-384f375879c82b52683fd49ab296c5afb0edb62f7f1e3a850b50b934062721233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2020 SAGES Poster</topic><topic>Abdominal Surgery</topic><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Endoscopy</topic><topic>Gastroenterology</topic><topic>Gynecology</topic><topic>Hepatology</topic><topic>Laparoscopy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Proctology</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Thomas M.</creatorcontrib><creatorcontrib>Hashimoto, Daniel A.</creatorcontrib><creatorcontrib>Ban, Yutong</creatorcontrib><creatorcontrib>Rattner, David W.</creatorcontrib><creatorcontrib>Inoue, Haruhiro</creatorcontrib><creatorcontrib>Lillemoe, Keith D.</creatorcontrib><creatorcontrib>Rus, Daniela L.</creatorcontrib><creatorcontrib>Rosman, Guy</creatorcontrib><creatorcontrib>Meireles, Ozanan R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Surgical endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Thomas M.</au><au>Hashimoto, Daniel A.</au><au>Ban, Yutong</au><au>Rattner, David W.</au><au>Inoue, Haruhiro</au><au>Lillemoe, Keith D.</au><au>Rus, Daniela L.</au><au>Rosman, Guy</au><au>Meireles, Ozanan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated operative phase identification in peroral endoscopic myotomy</atitle><jtitle>Surgical endoscopy</jtitle><stitle>Surg Endosc</stitle><addtitle>Surg Endosc</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>35</volume><issue>7</issue><spage>4008</spage><epage>4015</epage><pages>4008-4015</pages><issn>0930-2794</issn><eissn>1432-2218</eissn><abstract>Background Artificial intelligence (AI) and computer vision (CV) have revolutionized image analysis. In surgery, CV applications have focused on surgical phase identification in laparoscopic videos. We proposed to apply CV techniques to identify phases in an endoscopic procedure, peroral endoscopic myotomy (POEM). Methods POEM videos were collected from Massachusetts General and Showa University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following ground truth phases: (1) Submucosal injection, (2) Mucosotomy, (3) Submucosal tunnel, (4) Myotomy, and (5) Mucosotomy closure. The deep-learning CV model—Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM)—was trained on 30 videos to create POEMNet. We then used POEMNet to identify operative phases in the remaining 20 videos. The model’s performance was compared to surgeon annotated ground truth. Results POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4–87.9%). When evaluated on a per-phase basis, the model performed well, with mean unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The model performed best with longer phases, with 70.6% accuracy for phases that had a duration under 5 min and 88.3% accuracy for longer phases. Discussion A deep-learning-based approach to CV, previously successful in laparoscopic video phase identification, translates well to endoscopic procedures. With continued refinements, AI could contribute to intra-operative decision-support systems and post-operative risk prediction.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32720177</pmid><doi>10.1007/s00464-020-07833-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1965-8657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-2794
ispartof Surgical endoscopy, 2021-07, Vol.35 (7), p.4008-4015
issn 0930-2794
1432-2218
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7854950
source Springer Online Journals Complete
subjects 2020 SAGES Poster
Abdominal Surgery
Accuracy
Artificial intelligence
Computer vision
Deep learning
Endoscopy
Gastroenterology
Gynecology
Hepatology
Laparoscopy
Medicine
Medicine & Public Health
Proctology
Surgery
title Automated operative phase identification in peroral endoscopic myotomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20operative%20phase%20identification%20in%20peroral%20endoscopic%20myotomy&rft.jtitle=Surgical%20endoscopy&rft.au=Ward,%20Thomas%20M.&rft.date=2021-07-01&rft.volume=35&rft.issue=7&rft.spage=4008&rft.epage=4015&rft.pages=4008-4015&rft.issn=0930-2794&rft.eissn=1432-2218&rft_id=info:doi/10.1007/s00464-020-07833-9&rft_dat=%3Cproquest_pubme%3E2540007715%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540007715&rft_id=info:pmid/32720177&rfr_iscdi=true