Predicting change in diagnosis from major depression to bipolar disorder after antidepressant initiation

We aimed to develop and validate classification models able to identify individuals at high risk for transition from a diagnosis of depressive disorder to one of bipolar disorder. This retrospective health records cohort study applied outpatient clinical data from psychiatry and nonpsychiatry practi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2021-01, Vol.46 (2), p.455-461
Hauptverfasser: Pradier, Melanie F, Hughes, Michael C, McCoy, Jr, Thomas H, Barroilhet, Sergio A, Doshi-Velez, Finale, Perlis, Roy H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 2
container_start_page 455
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 46
creator Pradier, Melanie F
Hughes, Michael C
McCoy, Jr, Thomas H
Barroilhet, Sergio A
Doshi-Velez, Finale
Perlis, Roy H
description We aimed to develop and validate classification models able to identify individuals at high risk for transition from a diagnosis of depressive disorder to one of bipolar disorder. This retrospective health records cohort study applied outpatient clinical data from psychiatry and nonpsychiatry practice networks affiliated with two large academic medical centers between March 2008 and December 2017. Participants included 67,807 individuals with a diagnosis of major depressive disorder or depressive disorder not otherwise specified and no prior diagnosis of bipolar disorder, who received at least one of the nine antidepressant medications. The main outcome was at least one diagnostic code reflective of a bipolar disorder diagnosis within 3 months of index antidepressant prescription. Logistic regression and random forests using diagnostic and procedure codes as well as sociodemographic features were used to predict this outcome, with discrimination and calibration assessed in a held-out test set and then a second academic medical center. Among 67,807 individuals who received at least one antidepressant medication, 925 (1.36%) subsequently received a diagnosis of bipolar disorder within 3 months. Models incorporating coded diagnoses and procedures yielded a mean area under the receiver operating characteristic curve of 0.76 (ranging from 0.73 to 0.80). Standard supervised machine learning methods enabled development of discriminative and transferable models to predict transition to bipolar disorder. With further validation, these scores may enable physicians to more precisely calibrate follow-up intensity for high-risk patients after antidepressant initiation.
doi_str_mv 10.1038/s41386-020-00838-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442842872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-1e9b5151c7b57af9f9d1801a5c0c192002a4096baa85cccd1db494ba45fa9f8e3</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYNY7Lb6BXyQgC--jM3fSfIiSLFVKOiDQt_CnUxmN8tMsibZUr-9aXctKoSbS-7vHHI5CL2m5D0lXF8UQbnuO8JIR4jmurt_hlZUCdL1XNw-RyuiDe8o57en6KyULSFUql6_QKecGaZEL1Zo8y37Mbga4hq7DcS1xyHiMcA6phIKnnJa8ALblPHod9mXElLENeEh7NIM7TWUlEefMUz1ocYajmBrm1eoAWrTvEQnE8zFvzre5-jH1afvl5-7m6_XXy4_3nROcFI76s0gqaRODVLBZCYzUk0oSEccNYwQBoKYfgDQ0jk30nEQRgwg5ARm0p6fow8H391-WPzofKwZZrvLYYH8yyYI9t9JDBu7TndWackkV83g3dEgp597X6pdQnF-niH6tC-WCcF0O4o19O1_6Dbtc2zrNUpxpo1QslHsQLmcSsl-evoMJfYhSHsI0rYg7WOQ9r6J3vy9xpPkT3L8Nz2hnQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473289475</pqid></control><display><type>article</type><title>Predicting change in diagnosis from major depression to bipolar disorder after antidepressant initiation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pradier, Melanie F ; Hughes, Michael C ; McCoy, Jr, Thomas H ; Barroilhet, Sergio A ; Doshi-Velez, Finale ; Perlis, Roy H</creator><creatorcontrib>Pradier, Melanie F ; Hughes, Michael C ; McCoy, Jr, Thomas H ; Barroilhet, Sergio A ; Doshi-Velez, Finale ; Perlis, Roy H</creatorcontrib><description>We aimed to develop and validate classification models able to identify individuals at high risk for transition from a diagnosis of depressive disorder to one of bipolar disorder. This retrospective health records cohort study applied outpatient clinical data from psychiatry and nonpsychiatry practice networks affiliated with two large academic medical centers between March 2008 and December 2017. Participants included 67,807 individuals with a diagnosis of major depressive disorder or depressive disorder not otherwise specified and no prior diagnosis of bipolar disorder, who received at least one of the nine antidepressant medications. The main outcome was at least one diagnostic code reflective of a bipolar disorder diagnosis within 3 months of index antidepressant prescription. Logistic regression and random forests using diagnostic and procedure codes as well as sociodemographic features were used to predict this outcome, with discrimination and calibration assessed in a held-out test set and then a second academic medical center. Among 67,807 individuals who received at least one antidepressant medication, 925 (1.36%) subsequently received a diagnosis of bipolar disorder within 3 months. Models incorporating coded diagnoses and procedures yielded a mean area under the receiver operating characteristic curve of 0.76 (ranging from 0.73 to 0.80). Standard supervised machine learning methods enabled development of discriminative and transferable models to predict transition to bipolar disorder. With further validation, these scores may enable physicians to more precisely calibrate follow-up intensity for high-risk patients after antidepressant initiation.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-020-00838-x</identifier><identifier>PMID: 32927464</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Antidepressants ; Antidepressive Agents - therapeutic use ; Bipolar disorder ; Bipolar Disorder - diagnosis ; Bipolar Disorder - drug therapy ; Cohort Studies ; Depression ; Depressive Disorder, Major - diagnosis ; Depressive Disorder, Major - drug therapy ; Diagnosis ; Humans ; Learning algorithms ; Machine learning ; Mental depression ; Retrospective Studies ; Risk groups</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2021-01, Vol.46 (2), p.455-461</ispartof><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020.</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-1e9b5151c7b57af9f9d1801a5c0c192002a4096baa85cccd1db494ba45fa9f8e3</citedby><cites>FETCH-LOGICAL-c430t-1e9b5151c7b57af9f9d1801a5c0c192002a4096baa85cccd1db494ba45fa9f8e3</cites><orcidid>0000-0002-5862-6757 ; 0000-0002-2016-3662 ; 0000-0003-4859-7400 ; 0000-0002-5624-0439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852537/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852537/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32927464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradier, Melanie F</creatorcontrib><creatorcontrib>Hughes, Michael C</creatorcontrib><creatorcontrib>McCoy, Jr, Thomas H</creatorcontrib><creatorcontrib>Barroilhet, Sergio A</creatorcontrib><creatorcontrib>Doshi-Velez, Finale</creatorcontrib><creatorcontrib>Perlis, Roy H</creatorcontrib><title>Predicting change in diagnosis from major depression to bipolar disorder after antidepressant initiation</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>We aimed to develop and validate classification models able to identify individuals at high risk for transition from a diagnosis of depressive disorder to one of bipolar disorder. This retrospective health records cohort study applied outpatient clinical data from psychiatry and nonpsychiatry practice networks affiliated with two large academic medical centers between March 2008 and December 2017. Participants included 67,807 individuals with a diagnosis of major depressive disorder or depressive disorder not otherwise specified and no prior diagnosis of bipolar disorder, who received at least one of the nine antidepressant medications. The main outcome was at least one diagnostic code reflective of a bipolar disorder diagnosis within 3 months of index antidepressant prescription. Logistic regression and random forests using diagnostic and procedure codes as well as sociodemographic features were used to predict this outcome, with discrimination and calibration assessed in a held-out test set and then a second academic medical center. Among 67,807 individuals who received at least one antidepressant medication, 925 (1.36%) subsequently received a diagnosis of bipolar disorder within 3 months. Models incorporating coded diagnoses and procedures yielded a mean area under the receiver operating characteristic curve of 0.76 (ranging from 0.73 to 0.80). Standard supervised machine learning methods enabled development of discriminative and transferable models to predict transition to bipolar disorder. With further validation, these scores may enable physicians to more precisely calibrate follow-up intensity for high-risk patients after antidepressant initiation.</description><subject>Antidepressants</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Bipolar disorder</subject><subject>Bipolar Disorder - diagnosis</subject><subject>Bipolar Disorder - drug therapy</subject><subject>Cohort Studies</subject><subject>Depression</subject><subject>Depressive Disorder, Major - diagnosis</subject><subject>Depressive Disorder, Major - drug therapy</subject><subject>Diagnosis</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mental depression</subject><subject>Retrospective Studies</subject><subject>Risk groups</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkV9rFDEUxYNY7Lb6BXyQgC--jM3fSfIiSLFVKOiDQt_CnUxmN8tMsibZUr-9aXctKoSbS-7vHHI5CL2m5D0lXF8UQbnuO8JIR4jmurt_hlZUCdL1XNw-RyuiDe8o57en6KyULSFUql6_QKecGaZEL1Zo8y37Mbga4hq7DcS1xyHiMcA6phIKnnJa8ALblPHod9mXElLENeEh7NIM7TWUlEefMUz1ocYajmBrm1eoAWrTvEQnE8zFvzre5-jH1afvl5-7m6_XXy4_3nROcFI76s0gqaRODVLBZCYzUk0oSEccNYwQBoKYfgDQ0jk30nEQRgwg5ARm0p6fow8H391-WPzofKwZZrvLYYH8yyYI9t9JDBu7TndWackkV83g3dEgp597X6pdQnF-niH6tC-WCcF0O4o19O1_6Dbtc2zrNUpxpo1QslHsQLmcSsl-evoMJfYhSHsI0rYg7WOQ9r6J3vy9xpPkT3L8Nz2hnQ4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Pradier, Melanie F</creator><creator>Hughes, Michael C</creator><creator>McCoy, Jr, Thomas H</creator><creator>Barroilhet, Sergio A</creator><creator>Doshi-Velez, Finale</creator><creator>Perlis, Roy H</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5862-6757</orcidid><orcidid>https://orcid.org/0000-0002-2016-3662</orcidid><orcidid>https://orcid.org/0000-0003-4859-7400</orcidid><orcidid>https://orcid.org/0000-0002-5624-0439</orcidid></search><sort><creationdate>20210101</creationdate><title>Predicting change in diagnosis from major depression to bipolar disorder after antidepressant initiation</title><author>Pradier, Melanie F ; Hughes, Michael C ; McCoy, Jr, Thomas H ; Barroilhet, Sergio A ; Doshi-Velez, Finale ; Perlis, Roy H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-1e9b5151c7b57af9f9d1801a5c0c192002a4096baa85cccd1db494ba45fa9f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antidepressants</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Bipolar disorder</topic><topic>Bipolar Disorder - diagnosis</topic><topic>Bipolar Disorder - drug therapy</topic><topic>Cohort Studies</topic><topic>Depression</topic><topic>Depressive Disorder, Major - diagnosis</topic><topic>Depressive Disorder, Major - drug therapy</topic><topic>Diagnosis</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mental depression</topic><topic>Retrospective Studies</topic><topic>Risk groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradier, Melanie F</creatorcontrib><creatorcontrib>Hughes, Michael C</creatorcontrib><creatorcontrib>McCoy, Jr, Thomas H</creatorcontrib><creatorcontrib>Barroilhet, Sergio A</creatorcontrib><creatorcontrib>Doshi-Velez, Finale</creatorcontrib><creatorcontrib>Perlis, Roy H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradier, Melanie F</au><au>Hughes, Michael C</au><au>McCoy, Jr, Thomas H</au><au>Barroilhet, Sergio A</au><au>Doshi-Velez, Finale</au><au>Perlis, Roy H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting change in diagnosis from major depression to bipolar disorder after antidepressant initiation</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>46</volume><issue>2</issue><spage>455</spage><epage>461</epage><pages>455-461</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>We aimed to develop and validate classification models able to identify individuals at high risk for transition from a diagnosis of depressive disorder to one of bipolar disorder. This retrospective health records cohort study applied outpatient clinical data from psychiatry and nonpsychiatry practice networks affiliated with two large academic medical centers between March 2008 and December 2017. Participants included 67,807 individuals with a diagnosis of major depressive disorder or depressive disorder not otherwise specified and no prior diagnosis of bipolar disorder, who received at least one of the nine antidepressant medications. The main outcome was at least one diagnostic code reflective of a bipolar disorder diagnosis within 3 months of index antidepressant prescription. Logistic regression and random forests using diagnostic and procedure codes as well as sociodemographic features were used to predict this outcome, with discrimination and calibration assessed in a held-out test set and then a second academic medical center. Among 67,807 individuals who received at least one antidepressant medication, 925 (1.36%) subsequently received a diagnosis of bipolar disorder within 3 months. Models incorporating coded diagnoses and procedures yielded a mean area under the receiver operating characteristic curve of 0.76 (ranging from 0.73 to 0.80). Standard supervised machine learning methods enabled development of discriminative and transferable models to predict transition to bipolar disorder. With further validation, these scores may enable physicians to more precisely calibrate follow-up intensity for high-risk patients after antidepressant initiation.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>32927464</pmid><doi>10.1038/s41386-020-00838-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5862-6757</orcidid><orcidid>https://orcid.org/0000-0002-2016-3662</orcidid><orcidid>https://orcid.org/0000-0003-4859-7400</orcidid><orcidid>https://orcid.org/0000-0002-5624-0439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2021-01, Vol.46 (2), p.455-461
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852537
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Antidepressants
Antidepressive Agents - therapeutic use
Bipolar disorder
Bipolar Disorder - diagnosis
Bipolar Disorder - drug therapy
Cohort Studies
Depression
Depressive Disorder, Major - diagnosis
Depressive Disorder, Major - drug therapy
Diagnosis
Humans
Learning algorithms
Machine learning
Mental depression
Retrospective Studies
Risk groups
title Predicting change in diagnosis from major depression to bipolar disorder after antidepressant initiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20change%20in%20diagnosis%20from%20major%20depression%20to%20bipolar%20disorder%20after%20antidepressant%20initiation&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Pradier,%20Melanie%20F&rft.date=2021-01-01&rft.volume=46&rft.issue=2&rft.spage=455&rft.epage=461&rft.pages=455-461&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-020-00838-x&rft_dat=%3Cproquest_pubme%3E2442842872%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473289475&rft_id=info:pmid/32927464&rfr_iscdi=true