Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence

Mitochondria are critical for cellular energy production and homeostasis. Oxidative stress and associated mitochondrial dysfunction are integral components of the pathophysiology of retinal diseases, including diabetic retinopathy (DR), age-related macular degeneration, and glaucoma. Within mitochon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eye (London) 2021-01, Vol.35 (1), p.74-92
Hauptverfasser: Chen, Andrew X., Conti, Thais F., Hom, Grant L., Greenlee, Tyler E., Raimondi, Raffaele, Briskin, Isaac N., Rich, Collin A., Kampani, Reecha, Engel, Robert, Sharma, Sumit, Talcott, Katherine E., Singh, Rishi P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 74
container_title Eye (London)
container_volume 35
creator Chen, Andrew X.
Conti, Thais F.
Hom, Grant L.
Greenlee, Tyler E.
Raimondi, Raffaele
Briskin, Isaac N.
Rich, Collin A.
Kampani, Reecha
Engel, Robert
Sharma, Sumit
Talcott, Katherine E.
Singh, Rishi P.
description Mitochondria are critical for cellular energy production and homeostasis. Oxidative stress and associated mitochondrial dysfunction are integral components of the pathophysiology of retinal diseases, including diabetic retinopathy (DR), age-related macular degeneration, and glaucoma. Within mitochondria, flavoproteins are oxidized and reduced and emit a green autofluorescence when oxidized following blue light excitation. Recently, a noninvasive imaging device was developed to measure retinal flavoprotein fluorescence (FPF). Thus, oxidized FPF can act as a biomarker of mitochondrial dysfunction. This review article describes the literature surrounding mitochondrial FPF imaging in retinal disease. The authors describe the role of mitochondrial dysfunction in retinal diseases, experiments using FPF as a marker of mitochondrial dysfunction in vitro, the three generations of retinal FPF imaging devices, and the peer-reviewed publications that have examined FPF imaging in patients. Finally, the authors report their own study findings. Goals were to establish normative reference levels for FPF intensity and heterogeneity in healthy eyes, to compare between healthy eyes and eyes with diabetes and DR, and to compare across stages of DR. The authors present methods to calculate a patient’s expected FPF values using baseline characteristics. FPF intensity and heterogeneity were elevated in diabetic eyes compared to age-matched control eyes, and in proliferative DR compared to diabetic eyes without retinopathy. In diabetic eyes, higher FPF heterogeneity was associated with poorer visual acuity. In conclusion, while current retinal imaging modalities frequently focus on structural features, functional mitochondrial imaging shows promise as a metabolically targeted tool to evaluate retinal disease.
doi_str_mv 10.1038/s41433-020-1110-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473319186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-304e4aafa68f3635be06113f8570b4f300a638c61afef8f4ab60ed335deb89573</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qVVloPwCXKlIvvaSM_ycXJIQKrYTEpaDeLCcZL0ZZe2snSPvtcbQU2kqcfHi_eeM3j5BjCl8p8OYkCyo4r4FBTSmFeveGrKjQqpZCirdkBa2EmjH264Ac5nwPUEQN78kBZxraVrYrcnsxh37yMdix8hu79mFdRVdt_BT7uxiG5G3lQ5Vw8gsy-Iw2Y67mvJButA9xm-KEhXHjHBPmHkOPH8g7Z8eMH5_eI3Jz8e3n-ff66vryx_nZVd1Lrqaag0BhrbOqcVxx2SEoSrlrpIZOOA5gFW96Ra1D1zhhOwU4cC4H7JpWan5ETve-27nb4FB2T8mOZptKlrQz0XrzrxL8nVnHB6MbySSDYvDlySDF3zPmyWx8iTCONmCcs2GCadYKoWVBP_-H3sc5lasslOactrRRhaJ7qk8x54Tu-TMUzNKa2bdmSmtmac3sysynv1M8T_ypqQBsD-QihTWml9Wvuz4CzYilKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473319186</pqid></control><display><type>article</type><title>Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>PubMed Central</source><creator>Chen, Andrew X. ; Conti, Thais F. ; Hom, Grant L. ; Greenlee, Tyler E. ; Raimondi, Raffaele ; Briskin, Isaac N. ; Rich, Collin A. ; Kampani, Reecha ; Engel, Robert ; Sharma, Sumit ; Talcott, Katherine E. ; Singh, Rishi P.</creator><creatorcontrib>Chen, Andrew X. ; Conti, Thais F. ; Hom, Grant L. ; Greenlee, Tyler E. ; Raimondi, Raffaele ; Briskin, Isaac N. ; Rich, Collin A. ; Kampani, Reecha ; Engel, Robert ; Sharma, Sumit ; Talcott, Katherine E. ; Singh, Rishi P.</creatorcontrib><description>Mitochondria are critical for cellular energy production and homeostasis. Oxidative stress and associated mitochondrial dysfunction are integral components of the pathophysiology of retinal diseases, including diabetic retinopathy (DR), age-related macular degeneration, and glaucoma. Within mitochondria, flavoproteins are oxidized and reduced and emit a green autofluorescence when oxidized following blue light excitation. Recently, a noninvasive imaging device was developed to measure retinal flavoprotein fluorescence (FPF). Thus, oxidized FPF can act as a biomarker of mitochondrial dysfunction. This review article describes the literature surrounding mitochondrial FPF imaging in retinal disease. The authors describe the role of mitochondrial dysfunction in retinal diseases, experiments using FPF as a marker of mitochondrial dysfunction in vitro, the three generations of retinal FPF imaging devices, and the peer-reviewed publications that have examined FPF imaging in patients. Finally, the authors report their own study findings. Goals were to establish normative reference levels for FPF intensity and heterogeneity in healthy eyes, to compare between healthy eyes and eyes with diabetes and DR, and to compare across stages of DR. The authors present methods to calculate a patient’s expected FPF values using baseline characteristics. FPF intensity and heterogeneity were elevated in diabetic eyes compared to age-matched control eyes, and in proliferative DR compared to diabetic eyes without retinopathy. In diabetic eyes, higher FPF heterogeneity was associated with poorer visual acuity. In conclusion, while current retinal imaging modalities frequently focus on structural features, functional mitochondrial imaging shows promise as a metabolically targeted tool to evaluate retinal disease.</description><identifier>ISSN: 0950-222X</identifier><identifier>EISSN: 1476-5454</identifier><identifier>DOI: 10.1038/s41433-020-1110-y</identifier><identifier>PMID: 32709959</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/35 ; 692/308/53/2423 ; 692/699/3161/3175 ; Acuity ; Diabetes ; Diabetes mellitus ; Diabetic retinopathy ; Diabetic Retinopathy - metabolism ; Eye ; Flavoproteins ; Flavoproteins - metabolism ; Fluorescence ; Glaucoma ; Homeostasis ; Humans ; Laboratory Medicine ; Macular degeneration ; Medicine ; Medicine &amp; Public Health ; Mitochondria ; Ophthalmology ; Oxidative stress ; Pharmaceutical Sciences/Technology ; Retina ; Retina - diagnostic imaging ; Retina - metabolism ; Retinal Diseases - diagnostic imaging ; Retinal Diseases - metabolism ; Retinopathy ; Review ; Review Article ; Structure-function relationships ; Surgery ; Surgical Oncology</subject><ispartof>Eye (London), 2021-01, Vol.35 (1), p.74-92</ispartof><rights>The Author(s), under exclusive licence to The Royal College of Ophthalmologists 2020</rights><rights>The Author(s), under exclusive licence to The Royal College of Ophthalmologists 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-304e4aafa68f3635be06113f8570b4f300a638c61afef8f4ab60ed335deb89573</citedby><cites>FETCH-LOGICAL-c536t-304e4aafa68f3635be06113f8570b4f300a638c61afef8f4ab60ed335deb89573</cites><orcidid>0000-0002-4022-0441 ; 0000-0001-8472-7984 ; 0000-0003-4729-0706 ; 0000-0003-0785-9099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852520/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852520/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32709959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Andrew X.</creatorcontrib><creatorcontrib>Conti, Thais F.</creatorcontrib><creatorcontrib>Hom, Grant L.</creatorcontrib><creatorcontrib>Greenlee, Tyler E.</creatorcontrib><creatorcontrib>Raimondi, Raffaele</creatorcontrib><creatorcontrib>Briskin, Isaac N.</creatorcontrib><creatorcontrib>Rich, Collin A.</creatorcontrib><creatorcontrib>Kampani, Reecha</creatorcontrib><creatorcontrib>Engel, Robert</creatorcontrib><creatorcontrib>Sharma, Sumit</creatorcontrib><creatorcontrib>Talcott, Katherine E.</creatorcontrib><creatorcontrib>Singh, Rishi P.</creatorcontrib><title>Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence</title><title>Eye (London)</title><addtitle>Eye</addtitle><addtitle>Eye (Lond)</addtitle><description>Mitochondria are critical for cellular energy production and homeostasis. Oxidative stress and associated mitochondrial dysfunction are integral components of the pathophysiology of retinal diseases, including diabetic retinopathy (DR), age-related macular degeneration, and glaucoma. Within mitochondria, flavoproteins are oxidized and reduced and emit a green autofluorescence when oxidized following blue light excitation. Recently, a noninvasive imaging device was developed to measure retinal flavoprotein fluorescence (FPF). Thus, oxidized FPF can act as a biomarker of mitochondrial dysfunction. This review article describes the literature surrounding mitochondrial FPF imaging in retinal disease. The authors describe the role of mitochondrial dysfunction in retinal diseases, experiments using FPF as a marker of mitochondrial dysfunction in vitro, the three generations of retinal FPF imaging devices, and the peer-reviewed publications that have examined FPF imaging in patients. Finally, the authors report their own study findings. Goals were to establish normative reference levels for FPF intensity and heterogeneity in healthy eyes, to compare between healthy eyes and eyes with diabetes and DR, and to compare across stages of DR. The authors present methods to calculate a patient’s expected FPF values using baseline characteristics. FPF intensity and heterogeneity were elevated in diabetic eyes compared to age-matched control eyes, and in proliferative DR compared to diabetic eyes without retinopathy. In diabetic eyes, higher FPF heterogeneity was associated with poorer visual acuity. In conclusion, while current retinal imaging modalities frequently focus on structural features, functional mitochondrial imaging shows promise as a metabolically targeted tool to evaluate retinal disease.</description><subject>14</subject><subject>14/35</subject><subject>692/308/53/2423</subject><subject>692/699/3161/3175</subject><subject>Acuity</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - metabolism</subject><subject>Eye</subject><subject>Flavoproteins</subject><subject>Flavoproteins - metabolism</subject><subject>Fluorescence</subject><subject>Glaucoma</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Laboratory Medicine</subject><subject>Macular degeneration</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mitochondria</subject><subject>Ophthalmology</subject><subject>Oxidative stress</subject><subject>Pharmaceutical Sciences/Technology</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retina - metabolism</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Retinal Diseases - metabolism</subject><subject>Retinopathy</subject><subject>Review</subject><subject>Review Article</subject><subject>Structure-function relationships</subject><subject>Surgery</subject><subject>Surgical Oncology</subject><issn>0950-222X</issn><issn>1476-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9P3DAQxa2qVVloPwCXKlIvvaSM_ycXJIQKrYTEpaDeLCcZL0ZZe2snSPvtcbQU2kqcfHi_eeM3j5BjCl8p8OYkCyo4r4FBTSmFeveGrKjQqpZCirdkBa2EmjH264Ac5nwPUEQN78kBZxraVrYrcnsxh37yMdix8hu79mFdRVdt_BT7uxiG5G3lQ5Vw8gsy-Iw2Y67mvJButA9xm-KEhXHjHBPmHkOPH8g7Z8eMH5_eI3Jz8e3n-ff66vryx_nZVd1Lrqaag0BhrbOqcVxx2SEoSrlrpIZOOA5gFW96Ra1D1zhhOwU4cC4H7JpWan5ETve-27nb4FB2T8mOZptKlrQz0XrzrxL8nVnHB6MbySSDYvDlySDF3zPmyWx8iTCONmCcs2GCadYKoWVBP_-H3sc5lasslOactrRRhaJ7qk8x54Tu-TMUzNKa2bdmSmtmac3sysynv1M8T_ypqQBsD-QihTWml9Wvuz4CzYilKw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Chen, Andrew X.</creator><creator>Conti, Thais F.</creator><creator>Hom, Grant L.</creator><creator>Greenlee, Tyler E.</creator><creator>Raimondi, Raffaele</creator><creator>Briskin, Isaac N.</creator><creator>Rich, Collin A.</creator><creator>Kampani, Reecha</creator><creator>Engel, Robert</creator><creator>Sharma, Sumit</creator><creator>Talcott, Katherine E.</creator><creator>Singh, Rishi P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4022-0441</orcidid><orcidid>https://orcid.org/0000-0001-8472-7984</orcidid><orcidid>https://orcid.org/0000-0003-4729-0706</orcidid><orcidid>https://orcid.org/0000-0003-0785-9099</orcidid></search><sort><creationdate>20210101</creationdate><title>Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence</title><author>Chen, Andrew X. ; Conti, Thais F. ; Hom, Grant L. ; Greenlee, Tyler E. ; Raimondi, Raffaele ; Briskin, Isaac N. ; Rich, Collin A. ; Kampani, Reecha ; Engel, Robert ; Sharma, Sumit ; Talcott, Katherine E. ; Singh, Rishi P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-304e4aafa68f3635be06113f8570b4f300a638c61afef8f4ab60ed335deb89573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>14/35</topic><topic>692/308/53/2423</topic><topic>692/699/3161/3175</topic><topic>Acuity</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - metabolism</topic><topic>Eye</topic><topic>Flavoproteins</topic><topic>Flavoproteins - metabolism</topic><topic>Fluorescence</topic><topic>Glaucoma</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Laboratory Medicine</topic><topic>Macular degeneration</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mitochondria</topic><topic>Ophthalmology</topic><topic>Oxidative stress</topic><topic>Pharmaceutical Sciences/Technology</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retina - metabolism</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Retinal Diseases - metabolism</topic><topic>Retinopathy</topic><topic>Review</topic><topic>Review Article</topic><topic>Structure-function relationships</topic><topic>Surgery</topic><topic>Surgical Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Andrew X.</creatorcontrib><creatorcontrib>Conti, Thais F.</creatorcontrib><creatorcontrib>Hom, Grant L.</creatorcontrib><creatorcontrib>Greenlee, Tyler E.</creatorcontrib><creatorcontrib>Raimondi, Raffaele</creatorcontrib><creatorcontrib>Briskin, Isaac N.</creatorcontrib><creatorcontrib>Rich, Collin A.</creatorcontrib><creatorcontrib>Kampani, Reecha</creatorcontrib><creatorcontrib>Engel, Robert</creatorcontrib><creatorcontrib>Sharma, Sumit</creatorcontrib><creatorcontrib>Talcott, Katherine E.</creatorcontrib><creatorcontrib>Singh, Rishi P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Eye (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Andrew X.</au><au>Conti, Thais F.</au><au>Hom, Grant L.</au><au>Greenlee, Tyler E.</au><au>Raimondi, Raffaele</au><au>Briskin, Isaac N.</au><au>Rich, Collin A.</au><au>Kampani, Reecha</au><au>Engel, Robert</au><au>Sharma, Sumit</au><au>Talcott, Katherine E.</au><au>Singh, Rishi P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence</atitle><jtitle>Eye (London)</jtitle><stitle>Eye</stitle><addtitle>Eye (Lond)</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>35</volume><issue>1</issue><spage>74</spage><epage>92</epage><pages>74-92</pages><issn>0950-222X</issn><eissn>1476-5454</eissn><abstract>Mitochondria are critical for cellular energy production and homeostasis. Oxidative stress and associated mitochondrial dysfunction are integral components of the pathophysiology of retinal diseases, including diabetic retinopathy (DR), age-related macular degeneration, and glaucoma. Within mitochondria, flavoproteins are oxidized and reduced and emit a green autofluorescence when oxidized following blue light excitation. Recently, a noninvasive imaging device was developed to measure retinal flavoprotein fluorescence (FPF). Thus, oxidized FPF can act as a biomarker of mitochondrial dysfunction. This review article describes the literature surrounding mitochondrial FPF imaging in retinal disease. The authors describe the role of mitochondrial dysfunction in retinal diseases, experiments using FPF as a marker of mitochondrial dysfunction in vitro, the three generations of retinal FPF imaging devices, and the peer-reviewed publications that have examined FPF imaging in patients. Finally, the authors report their own study findings. Goals were to establish normative reference levels for FPF intensity and heterogeneity in healthy eyes, to compare between healthy eyes and eyes with diabetes and DR, and to compare across stages of DR. The authors present methods to calculate a patient’s expected FPF values using baseline characteristics. FPF intensity and heterogeneity were elevated in diabetic eyes compared to age-matched control eyes, and in proliferative DR compared to diabetic eyes without retinopathy. In diabetic eyes, higher FPF heterogeneity was associated with poorer visual acuity. In conclusion, while current retinal imaging modalities frequently focus on structural features, functional mitochondrial imaging shows promise as a metabolically targeted tool to evaluate retinal disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32709959</pmid><doi>10.1038/s41433-020-1110-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4022-0441</orcidid><orcidid>https://orcid.org/0000-0001-8472-7984</orcidid><orcidid>https://orcid.org/0000-0003-4729-0706</orcidid><orcidid>https://orcid.org/0000-0003-0785-9099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-222X
ispartof Eye (London), 2021-01, Vol.35 (1), p.74-92
issn 0950-222X
1476-5454
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852520
source MEDLINE; SpringerLink Journals; PubMed Central
subjects 14
14/35
692/308/53/2423
692/699/3161/3175
Acuity
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diabetic Retinopathy - metabolism
Eye
Flavoproteins
Flavoproteins - metabolism
Fluorescence
Glaucoma
Homeostasis
Humans
Laboratory Medicine
Macular degeneration
Medicine
Medicine & Public Health
Mitochondria
Ophthalmology
Oxidative stress
Pharmaceutical Sciences/Technology
Retina
Retina - diagnostic imaging
Retina - metabolism
Retinal Diseases - diagnostic imaging
Retinal Diseases - metabolism
Retinopathy
Review
Review Article
Structure-function relationships
Surgery
Surgical Oncology
title Functional imaging of mitochondria in retinal diseases using flavoprotein fluorescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20imaging%20of%20mitochondria%20in%20retinal%20diseases%20using%20flavoprotein%20fluorescence&rft.jtitle=Eye%20(London)&rft.au=Chen,%20Andrew%20X.&rft.date=2021-01-01&rft.volume=35&rft.issue=1&rft.spage=74&rft.epage=92&rft.pages=74-92&rft.issn=0950-222X&rft.eissn=1476-5454&rft_id=info:doi/10.1038/s41433-020-1110-y&rft_dat=%3Cproquest_pubme%3E2473319186%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473319186&rft_id=info:pmid/32709959&rfr_iscdi=true