Supergravitational turbulent thermal convection

High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-10, Vol.6 (40)
Hauptverfasser: Jiang, Hechuan, Zhu, Xiaojue, Wang, Dongpu, Huisman, Sander G, Sun, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 40
container_start_page
container_title Science advances
container_volume 6
creator Jiang, Hechuan
Zhu, Xiaojue
Wang, Dongpu
Huisman, Sander G
Sun, Chao
description High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.
doi_str_mv 10.1126/sciadv.abb8676
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448413453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxRdRbKm9epQevaTd7-xeBClWhYIH9bxs9qONJNm6mwT8701pLfU0w7w3b4YfALcIzhHCfJFMqW0_10UheM4vwBiTnGWYUXF51o_ANKUvCCGinDMkr8GIEAiFkGQMFu_dzsVN1H3Z6rYMja5mbReLrnJNO2u3LtbDxISmd2Yv34Arr6vkpsc6AZ-rp4_lS7Z-e35dPq4zQyRsM86xx8wTLDnmjmrutbVIWEuxzxm3vMAOElI4aqWFzstCGJpL4T3ynBhGJuDhkLvritpZM3wTdaV2sax1_FFBl-q_0pRbtQm9ygXDRIoh4P4YEMN351Kr6jIZV1W6caFLClMqKCKUkcE6P1hNDClF509nEFR70OoAWh1BDwt358-d7H9YyS8wZX0-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448413453</pqid></control><display><type>article</type><title>Supergravitational turbulent thermal convection</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jiang, Hechuan ; Zhu, Xiaojue ; Wang, Dongpu ; Huisman, Sander G ; Sun, Chao</creator><creatorcontrib>Jiang, Hechuan ; Zhu, Xiaojue ; Wang, Dongpu ; Huisman, Sander G ; Sun, Chao</creatorcontrib><description>High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abb8676</identifier><identifier>PMID: 33008893</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Engineering ; Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2020-10, Vol.6 (40)</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</citedby><cites>FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</cites><orcidid>0000-0002-0930-6343 ; 0000-0002-1421-2210 ; 0000-0003-3790-9886 ; 0000-0003-3069-0586 ; 0000-0002-7878-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33008893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Hechuan</creatorcontrib><creatorcontrib>Zhu, Xiaojue</creatorcontrib><creatorcontrib>Wang, Dongpu</creatorcontrib><creatorcontrib>Huisman, Sander G</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><title>Supergravitational turbulent thermal convection</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.</description><subject>Engineering</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Lw0AQxRdRbKm9epQevaTd7-xeBClWhYIH9bxs9qONJNm6mwT8701pLfU0w7w3b4YfALcIzhHCfJFMqW0_10UheM4vwBiTnGWYUXF51o_ANKUvCCGinDMkr8GIEAiFkGQMFu_dzsVN1H3Z6rYMja5mbReLrnJNO2u3LtbDxISmd2Yv34Arr6vkpsc6AZ-rp4_lS7Z-e35dPq4zQyRsM86xx8wTLDnmjmrutbVIWEuxzxm3vMAOElI4aqWFzstCGJpL4T3ynBhGJuDhkLvritpZM3wTdaV2sax1_FFBl-q_0pRbtQm9ygXDRIoh4P4YEMN351Kr6jIZV1W6caFLClMqKCKUkcE6P1hNDClF509nEFR70OoAWh1BDwt358-d7H9YyS8wZX0-</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Jiang, Hechuan</creator><creator>Zhu, Xiaojue</creator><creator>Wang, Dongpu</creator><creator>Huisman, Sander G</creator><creator>Sun, Chao</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0930-6343</orcidid><orcidid>https://orcid.org/0000-0002-1421-2210</orcidid><orcidid>https://orcid.org/0000-0003-3790-9886</orcidid><orcidid>https://orcid.org/0000-0003-3069-0586</orcidid><orcidid>https://orcid.org/0000-0002-7878-0655</orcidid></search><sort><creationdate>20201002</creationdate><title>Supergravitational turbulent thermal convection</title><author>Jiang, Hechuan ; Zhu, Xiaojue ; Wang, Dongpu ; Huisman, Sander G ; Sun, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hechuan</creatorcontrib><creatorcontrib>Zhu, Xiaojue</creatorcontrib><creatorcontrib>Wang, Dongpu</creatorcontrib><creatorcontrib>Huisman, Sander G</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hechuan</au><au>Zhu, Xiaojue</au><au>Wang, Dongpu</au><au>Huisman, Sander G</au><au>Sun, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supergravitational turbulent thermal convection</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-10-02</date><risdate>2020</risdate><volume>6</volume><issue>40</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33008893</pmid><doi>10.1126/sciadv.abb8676</doi><orcidid>https://orcid.org/0000-0002-0930-6343</orcidid><orcidid>https://orcid.org/0000-0002-1421-2210</orcidid><orcidid>https://orcid.org/0000-0003-3790-9886</orcidid><orcidid>https://orcid.org/0000-0003-3069-0586</orcidid><orcidid>https://orcid.org/0000-0002-7878-0655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-10, Vol.6 (40)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852398
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Engineering
Physics
SciAdv r-articles
title Supergravitational turbulent thermal convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supergravitational%20turbulent%20thermal%20convection&rft.jtitle=Science%20advances&rft.au=Jiang,%20Hechuan&rft.date=2020-10-02&rft.volume=6&rft.issue=40&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abb8676&rft_dat=%3Cproquest_pubme%3E2448413453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448413453&rft_id=info:pmid/33008893&rfr_iscdi=true