Supergravitational turbulent thermal convection
High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convect...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-10, Vol.6 (40) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Science advances |
container_volume | 6 |
creator | Jiang, Hechuan Zhu, Xiaojue Wang, Dongpu Huisman, Sander G Sun, Chao |
description | High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems. |
doi_str_mv | 10.1126/sciadv.abb8676 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448413453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxRdRbKm9epQevaTd7-xeBClWhYIH9bxs9qONJNm6mwT8701pLfU0w7w3b4YfALcIzhHCfJFMqW0_10UheM4vwBiTnGWYUXF51o_ANKUvCCGinDMkr8GIEAiFkGQMFu_dzsVN1H3Z6rYMja5mbReLrnJNO2u3LtbDxISmd2Yv34Arr6vkpsc6AZ-rp4_lS7Z-e35dPq4zQyRsM86xx8wTLDnmjmrutbVIWEuxzxm3vMAOElI4aqWFzstCGJpL4T3ynBhGJuDhkLvritpZM3wTdaV2sax1_FFBl-q_0pRbtQm9ygXDRIoh4P4YEMN351Kr6jIZV1W6caFLClMqKCKUkcE6P1hNDClF509nEFR70OoAWh1BDwt358-d7H9YyS8wZX0-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448413453</pqid></control><display><type>article</type><title>Supergravitational turbulent thermal convection</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jiang, Hechuan ; Zhu, Xiaojue ; Wang, Dongpu ; Huisman, Sander G ; Sun, Chao</creator><creatorcontrib>Jiang, Hechuan ; Zhu, Xiaojue ; Wang, Dongpu ; Huisman, Sander G ; Sun, Chao</creatorcontrib><description>High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abb8676</identifier><identifier>PMID: 33008893</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Engineering ; Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2020-10, Vol.6 (40)</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</citedby><cites>FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</cites><orcidid>0000-0002-0930-6343 ; 0000-0002-1421-2210 ; 0000-0003-3790-9886 ; 0000-0003-3069-0586 ; 0000-0002-7878-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33008893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Hechuan</creatorcontrib><creatorcontrib>Zhu, Xiaojue</creatorcontrib><creatorcontrib>Wang, Dongpu</creatorcontrib><creatorcontrib>Huisman, Sander G</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><title>Supergravitational turbulent thermal convection</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.</description><subject>Engineering</subject><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Lw0AQxRdRbKm9epQevaTd7-xeBClWhYIH9bxs9qONJNm6mwT8701pLfU0w7w3b4YfALcIzhHCfJFMqW0_10UheM4vwBiTnGWYUXF51o_ANKUvCCGinDMkr8GIEAiFkGQMFu_dzsVN1H3Z6rYMja5mbReLrnJNO2u3LtbDxISmd2Yv34Arr6vkpsc6AZ-rp4_lS7Z-e35dPq4zQyRsM86xx8wTLDnmjmrutbVIWEuxzxm3vMAOElI4aqWFzstCGJpL4T3ynBhGJuDhkLvritpZM3wTdaV2sax1_FFBl-q_0pRbtQm9ygXDRIoh4P4YEMN351Kr6jIZV1W6caFLClMqKCKUkcE6P1hNDClF509nEFR70OoAWh1BDwt358-d7H9YyS8wZX0-</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Jiang, Hechuan</creator><creator>Zhu, Xiaojue</creator><creator>Wang, Dongpu</creator><creator>Huisman, Sander G</creator><creator>Sun, Chao</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0930-6343</orcidid><orcidid>https://orcid.org/0000-0002-1421-2210</orcidid><orcidid>https://orcid.org/0000-0003-3790-9886</orcidid><orcidid>https://orcid.org/0000-0003-3069-0586</orcidid><orcidid>https://orcid.org/0000-0002-7878-0655</orcidid></search><sort><creationdate>20201002</creationdate><title>Supergravitational turbulent thermal convection</title><author>Jiang, Hechuan ; Zhu, Xiaojue ; Wang, Dongpu ; Huisman, Sander G ; Sun, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-662f25f329626e4a6fadd18dd42f756d6b2e033be4d9d0ef9b8c4798ff1f63c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hechuan</creatorcontrib><creatorcontrib>Zhu, Xiaojue</creatorcontrib><creatorcontrib>Wang, Dongpu</creatorcontrib><creatorcontrib>Huisman, Sander G</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hechuan</au><au>Zhu, Xiaojue</au><au>Wang, Dongpu</au><au>Huisman, Sander G</au><au>Sun, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supergravitational turbulent thermal convection</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-10-02</date><risdate>2020</risdate><volume>6</volume><issue>40</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>High-Rayleigh number convective turbulence is ubiquitous in many natural phenomena and in industries, such as atmospheric circulations, oceanic flows, flows in the fluid core of planets, and energy generations. In this work, we present a novel approach to boost the Rayleigh number in thermal convection by exploiting centrifugal acceleration and rapidly rotating a cylindrical annulus to reach an effective gravity of 60 times Earth's gravity. We show that in the regime where the Coriolis effect is strong, the scaling exponent of Nusselt number versus Rayleigh number exceeds one-third once the Rayleigh number is large enough. The convective rolls revolve in prograde direction, signifying the emergence of zonal flow. The present findings open a new avenue on the exploration of high-Rayleigh number turbulent thermal convection and will improve the understanding of the flow dynamics and heat transfer processes in geophysical and astrophysical flows and other strongly rotating systems.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33008893</pmid><doi>10.1126/sciadv.abb8676</doi><orcidid>https://orcid.org/0000-0002-0930-6343</orcidid><orcidid>https://orcid.org/0000-0002-1421-2210</orcidid><orcidid>https://orcid.org/0000-0003-3790-9886</orcidid><orcidid>https://orcid.org/0000-0003-3069-0586</orcidid><orcidid>https://orcid.org/0000-0002-7878-0655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-10, Vol.6 (40) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7852398 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Engineering Physics SciAdv r-articles |
title | Supergravitational turbulent thermal convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supergravitational%20turbulent%20thermal%20convection&rft.jtitle=Science%20advances&rft.au=Jiang,%20Hechuan&rft.date=2020-10-02&rft.volume=6&rft.issue=40&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abb8676&rft_dat=%3Cproquest_pubme%3E2448413453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448413453&rft_id=info:pmid/33008893&rfr_iscdi=true |