A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex

Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ. The underlying mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2020-12, Vol.108 (6), p.1181-1193.e8
Hauptverfasser: Keller, Andreas J., Dipoppa, Mario, Roth, Morgane M., Caudill, Matthew S., Ingrosso, Alessandro, Miller, Kenneth D., Scanziani, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193.e8
container_issue 6
container_start_page 1181
container_title Neuron (Cambridge, Mass.)
container_volume 108
creator Keller, Andreas J.
Dipoppa, Mario
Roth, Morgane M.
Caudill, Matthew S.
Ingrosso, Alessandro
Miller, Kenneth D.
Scanziani, Massimo
description Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ. The underlying mechanisms remain unclear. Here, we use optical recordings, manipulations, and computational modeling to show that disinhibitory circuits consisting of vasoactive intestinal peptide (VIP)-expressing and somatostatin (SOM)-expressing inhibitory neurons modulate responses in mouse visual cortex depending on similarity between stimulus and surround, primarily by modulating recurrent excitation. When stimulus and surround are similar, VIP neurons are inactive, and activity of SOM neurons leads to suppression of excitatory neurons. However, when stimulus and surround differ, VIP neurons are active, inhibiting SOM neurons, which leads to relief of excitatory neurons from suppression. We have identified a canonical cortical disinhibitory circuit that contributes to contextual modulation and may regulate perceptual saliency. •Visual context modulates the response of SOM oppositely to all other V1 neurons•The VIP-SOM disinhibitory circuit controls the impact of context on V1 responses•The VIP-SOM disinhibitory circuit controls V1 by modulating recurrent excitation•As we predict by modeling, silencing of VIP neurons reduces contextual modulation Context provides meaning by influencing perception. In the visual world, context is the visual environment surrounding a visual scene. Here, Keller et al. report that a canonical disinhibitory circuit controls the response of mouse visual cortex to a visual stimulus depending on the context within which that stimulus is presented.
doi_str_mv 10.1016/j.neuron.2020.11.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7850578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627320308916</els_id><sourcerecordid>2473403142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-5f3cd34f6050af8f5e0a6878a5561cc3bc92750c1729516b8a9c4b2e0a6160e73</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhGyAUiQuXLDN2bCcXpCrlX1UEB-BqOY5DvcraxXaq9tvjaEspHDiN5PnNm3l-hDxH2CKgeL3bervE4LcUaHnCLSB7QDYInawb7LqHZANtJ2pBJTsiT1LaAWDDO3xMjhhjgBLphpydVKcuOX_hBpdDvKl6F83icjWFWPXBZ3udFz1Xn8K4zDq74Cvnqy_R7XWBv7u0NvsQC_eUPJr0nOyz23pMvr17-7X_UJ9_fv-xPzmvDecy13xiZmTNJICDntqJW9Cila3mXKAxbDAdlRwMStpxFEOrO9MMdKVQgJXsmLw56F4uw96Oxvoc9awuDzepoJ36u-PdhfoRrpRsOXDZFoFXtwIx_FxsymrvkrHzrL0NS1K0kawBhg0t6Mt_0F1Yoi_2VooyYKJdqeZAmRhSina6OwZBrWGpnTqEpdawFKIqYZWxF_eN3A39TuePU1u-88rZqJJx1hs7umhNVmNw_9_wCwoNp7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472303682</pqid></control><display><type>article</type><title>A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex</title><source>MEDLINE</source><source>Open Access: Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Keller, Andreas J. ; Dipoppa, Mario ; Roth, Morgane M. ; Caudill, Matthew S. ; Ingrosso, Alessandro ; Miller, Kenneth D. ; Scanziani, Massimo</creator><creatorcontrib>Keller, Andreas J. ; Dipoppa, Mario ; Roth, Morgane M. ; Caudill, Matthew S. ; Ingrosso, Alessandro ; Miller, Kenneth D. ; Scanziani, Massimo</creatorcontrib><description>Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ. The underlying mechanisms remain unclear. Here, we use optical recordings, manipulations, and computational modeling to show that disinhibitory circuits consisting of vasoactive intestinal peptide (VIP)-expressing and somatostatin (SOM)-expressing inhibitory neurons modulate responses in mouse visual cortex depending on similarity between stimulus and surround, primarily by modulating recurrent excitation. When stimulus and surround are similar, VIP neurons are inactive, and activity of SOM neurons leads to suppression of excitatory neurons. However, when stimulus and surround differ, VIP neurons are active, inhibiting SOM neurons, which leads to relief of excitatory neurons from suppression. We have identified a canonical cortical disinhibitory circuit that contributes to contextual modulation and may regulate perceptual saliency. •Visual context modulates the response of SOM oppositely to all other V1 neurons•The VIP-SOM disinhibitory circuit controls the impact of context on V1 responses•The VIP-SOM disinhibitory circuit controls V1 by modulating recurrent excitation•As we predict by modeling, silencing of VIP neurons reduces contextual modulation Context provides meaning by influencing perception. In the visual world, context is the visual environment surrounding a visual scene. Here, Keller et al. report that a canonical disinhibitory circuit controls the response of mouse visual cortex to a visual stimulus depending on the context within which that stimulus is presented.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.11.013</identifier><identifier>PMID: 33301712</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium - metabolism ; canonical disinhibitory circuit ; computational modeling ; Computational neuroscience ; contextual modulation ; figure-ground segregation ; inhibitory neurons ; Intestine ; Mice ; Models, Neurological ; Neural Inhibition - physiology ; Neurons ; Neurons - metabolism ; Photic Stimulation ; pop-out effects ; recurrent neural network ; saliency ; Somatostatin ; Somatostatin - metabolism ; stabilized supralinear network ; Vasoactive agents ; Vasoactive intestinal peptide ; Vasoactive Intestinal Peptide - metabolism ; Visual cortex ; Visual Cortex - metabolism ; Visual Cortex - physiology ; Visual pathways ; Visual Pathways - metabolism ; Visual Pathways - physiology ; Visual Perception - physiology ; Visual stimuli</subject><ispartof>Neuron (Cambridge, Mass.), 2020-12, Vol.108 (6), p.1181-1193.e8</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-5f3cd34f6050af8f5e0a6878a5561cc3bc92750c1729516b8a9c4b2e0a6160e73</citedby><cites>FETCH-LOGICAL-c557t-5f3cd34f6050af8f5e0a6878a5561cc3bc92750c1729516b8a9c4b2e0a6160e73</cites><orcidid>0000-0002-4454-4224 ; 0000-0001-5430-7559 ; 0000-0001-7997-6118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627320308916$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33301712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Andreas J.</creatorcontrib><creatorcontrib>Dipoppa, Mario</creatorcontrib><creatorcontrib>Roth, Morgane M.</creatorcontrib><creatorcontrib>Caudill, Matthew S.</creatorcontrib><creatorcontrib>Ingrosso, Alessandro</creatorcontrib><creatorcontrib>Miller, Kenneth D.</creatorcontrib><creatorcontrib>Scanziani, Massimo</creatorcontrib><title>A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ. The underlying mechanisms remain unclear. Here, we use optical recordings, manipulations, and computational modeling to show that disinhibitory circuits consisting of vasoactive intestinal peptide (VIP)-expressing and somatostatin (SOM)-expressing inhibitory neurons modulate responses in mouse visual cortex depending on similarity between stimulus and surround, primarily by modulating recurrent excitation. When stimulus and surround are similar, VIP neurons are inactive, and activity of SOM neurons leads to suppression of excitatory neurons. However, when stimulus and surround differ, VIP neurons are active, inhibiting SOM neurons, which leads to relief of excitatory neurons from suppression. We have identified a canonical cortical disinhibitory circuit that contributes to contextual modulation and may regulate perceptual saliency. •Visual context modulates the response of SOM oppositely to all other V1 neurons•The VIP-SOM disinhibitory circuit controls the impact of context on V1 responses•The VIP-SOM disinhibitory circuit controls V1 by modulating recurrent excitation•As we predict by modeling, silencing of VIP neurons reduces contextual modulation Context provides meaning by influencing perception. In the visual world, context is the visual environment surrounding a visual scene. Here, Keller et al. report that a canonical disinhibitory circuit controls the response of mouse visual cortex to a visual stimulus depending on the context within which that stimulus is presented.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>canonical disinhibitory circuit</subject><subject>computational modeling</subject><subject>Computational neuroscience</subject><subject>contextual modulation</subject><subject>figure-ground segregation</subject><subject>inhibitory neurons</subject><subject>Intestine</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Photic Stimulation</subject><subject>pop-out effects</subject><subject>recurrent neural network</subject><subject>saliency</subject><subject>Somatostatin</subject><subject>Somatostatin - metabolism</subject><subject>stabilized supralinear network</subject><subject>Vasoactive agents</subject><subject>Vasoactive intestinal peptide</subject><subject>Vasoactive Intestinal Peptide - metabolism</subject><subject>Visual cortex</subject><subject>Visual Cortex - metabolism</subject><subject>Visual Cortex - physiology</subject><subject>Visual pathways</subject><subject>Visual Pathways - metabolism</subject><subject>Visual Pathways - physiology</subject><subject>Visual Perception - physiology</subject><subject>Visual stimuli</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhGyAUiQuXLDN2bCcXpCrlX1UEB-BqOY5DvcraxXaq9tvjaEspHDiN5PnNm3l-hDxH2CKgeL3bervE4LcUaHnCLSB7QDYInawb7LqHZANtJ2pBJTsiT1LaAWDDO3xMjhhjgBLphpydVKcuOX_hBpdDvKl6F83icjWFWPXBZ3udFz1Xn8K4zDq74Cvnqy_R7XWBv7u0NvsQC_eUPJr0nOyz23pMvr17-7X_UJ9_fv-xPzmvDecy13xiZmTNJICDntqJW9Cila3mXKAxbDAdlRwMStpxFEOrO9MMdKVQgJXsmLw56F4uw96Oxvoc9awuDzepoJ36u-PdhfoRrpRsOXDZFoFXtwIx_FxsymrvkrHzrL0NS1K0kawBhg0t6Mt_0F1Yoi_2VooyYKJdqeZAmRhSina6OwZBrWGpnTqEpdawFKIqYZWxF_eN3A39TuePU1u-88rZqJJx1hs7umhNVmNw_9_wCwoNp7I</recordid><startdate>20201223</startdate><enddate>20201223</enddate><creator>Keller, Andreas J.</creator><creator>Dipoppa, Mario</creator><creator>Roth, Morgane M.</creator><creator>Caudill, Matthew S.</creator><creator>Ingrosso, Alessandro</creator><creator>Miller, Kenneth D.</creator><creator>Scanziani, Massimo</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4454-4224</orcidid><orcidid>https://orcid.org/0000-0001-5430-7559</orcidid><orcidid>https://orcid.org/0000-0001-7997-6118</orcidid></search><sort><creationdate>20201223</creationdate><title>A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex</title><author>Keller, Andreas J. ; Dipoppa, Mario ; Roth, Morgane M. ; Caudill, Matthew S. ; Ingrosso, Alessandro ; Miller, Kenneth D. ; Scanziani, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-5f3cd34f6050af8f5e0a6878a5561cc3bc92750c1729516b8a9c4b2e0a6160e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>canonical disinhibitory circuit</topic><topic>computational modeling</topic><topic>Computational neuroscience</topic><topic>contextual modulation</topic><topic>figure-ground segregation</topic><topic>inhibitory neurons</topic><topic>Intestine</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Photic Stimulation</topic><topic>pop-out effects</topic><topic>recurrent neural network</topic><topic>saliency</topic><topic>Somatostatin</topic><topic>Somatostatin - metabolism</topic><topic>stabilized supralinear network</topic><topic>Vasoactive agents</topic><topic>Vasoactive intestinal peptide</topic><topic>Vasoactive Intestinal Peptide - metabolism</topic><topic>Visual cortex</topic><topic>Visual Cortex - metabolism</topic><topic>Visual Cortex - physiology</topic><topic>Visual pathways</topic><topic>Visual Pathways - metabolism</topic><topic>Visual Pathways - physiology</topic><topic>Visual Perception - physiology</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Andreas J.</creatorcontrib><creatorcontrib>Dipoppa, Mario</creatorcontrib><creatorcontrib>Roth, Morgane M.</creatorcontrib><creatorcontrib>Caudill, Matthew S.</creatorcontrib><creatorcontrib>Ingrosso, Alessandro</creatorcontrib><creatorcontrib>Miller, Kenneth D.</creatorcontrib><creatorcontrib>Scanziani, Massimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Andreas J.</au><au>Dipoppa, Mario</au><au>Roth, Morgane M.</au><au>Caudill, Matthew S.</au><au>Ingrosso, Alessandro</au><au>Miller, Kenneth D.</au><au>Scanziani, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-12-23</date><risdate>2020</risdate><volume>108</volume><issue>6</issue><spage>1181</spage><epage>1193.e8</epage><pages>1181-1193.e8</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ. The underlying mechanisms remain unclear. Here, we use optical recordings, manipulations, and computational modeling to show that disinhibitory circuits consisting of vasoactive intestinal peptide (VIP)-expressing and somatostatin (SOM)-expressing inhibitory neurons modulate responses in mouse visual cortex depending on similarity between stimulus and surround, primarily by modulating recurrent excitation. When stimulus and surround are similar, VIP neurons are inactive, and activity of SOM neurons leads to suppression of excitatory neurons. However, when stimulus and surround differ, VIP neurons are active, inhibiting SOM neurons, which leads to relief of excitatory neurons from suppression. We have identified a canonical cortical disinhibitory circuit that contributes to contextual modulation and may regulate perceptual saliency. •Visual context modulates the response of SOM oppositely to all other V1 neurons•The VIP-SOM disinhibitory circuit controls the impact of context on V1 responses•The VIP-SOM disinhibitory circuit controls V1 by modulating recurrent excitation•As we predict by modeling, silencing of VIP neurons reduces contextual modulation Context provides meaning by influencing perception. In the visual world, context is the visual environment surrounding a visual scene. Here, Keller et al. report that a canonical disinhibitory circuit controls the response of mouse visual cortex to a visual stimulus depending on the context within which that stimulus is presented.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33301712</pmid><doi>10.1016/j.neuron.2020.11.013</doi><orcidid>https://orcid.org/0000-0002-4454-4224</orcidid><orcidid>https://orcid.org/0000-0001-5430-7559</orcidid><orcidid>https://orcid.org/0000-0001-7997-6118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2020-12, Vol.108 (6), p.1181-1193.e8
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7850578
source MEDLINE; Open Access: Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Animals
Calcium - metabolism
canonical disinhibitory circuit
computational modeling
Computational neuroscience
contextual modulation
figure-ground segregation
inhibitory neurons
Intestine
Mice
Models, Neurological
Neural Inhibition - physiology
Neurons
Neurons - metabolism
Photic Stimulation
pop-out effects
recurrent neural network
saliency
Somatostatin
Somatostatin - metabolism
stabilized supralinear network
Vasoactive agents
Vasoactive intestinal peptide
Vasoactive Intestinal Peptide - metabolism
Visual cortex
Visual Cortex - metabolism
Visual Cortex - physiology
Visual pathways
Visual Pathways - metabolism
Visual Pathways - physiology
Visual Perception - physiology
Visual stimuli
title A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Disinhibitory%20Circuit%20for%20Contextual%20Modulation%20in%20Primary%20Visual%20Cortex&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Keller,%20Andreas%20J.&rft.date=2020-12-23&rft.volume=108&rft.issue=6&rft.spage=1181&rft.epage=1193.e8&rft.pages=1181-1193.e8&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.11.013&rft_dat=%3Cproquest_pubme%3E2473403142%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472303682&rft_id=info:pmid/33301712&rft_els_id=S0896627320308916&rfr_iscdi=true