Surprise

Abstract Measures of information and surprise, such as the Shannon information value (S value), quantify the signal present in a stream of noisy data. We illustrate the use of such information measures in the context of interpreting P values as compatibility indices. S values help communicate the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 2021-02, Vol.190 (2), p.191-193
Hauptverfasser: Cole, Stephen R, Edwards, Jessie K, Greenland, Sander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 191
container_title American journal of epidemiology
container_volume 190
creator Cole, Stephen R
Edwards, Jessie K
Greenland, Sander
description Abstract Measures of information and surprise, such as the Shannon information value (S value), quantify the signal present in a stream of noisy data. We illustrate the use of such information measures in the context of interpreting P values as compatibility indices. S values help communicate the limited information supplied by conventional statistics and cast a critical light on cutoffs used to judge and construct those statistics. Misinterpretations of statistics may be reduced by interpreting P values and interval estimates using compatibility concepts and S values instead of “significance” and “confidence.”
doi_str_mv 10.1093/aje/kwaa136
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7850156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwaa136</oup_id><sourcerecordid>2513117691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-4c39976a18cf97f594695fb0296faa401a989fc9f9478c3a2707227b770f37393</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMotlZX7t0IIsjYm_fcjSDFFxRcqOuQxkSnTmdq0lH890Zai7pwlcU9HL4cQvYpnFJAPrRTP3x5t5ZytUH6VGhVKCbVJukDACuQKdYjOylNAShFCdukx5kSJYLqk95dF-exSn6XbAVbJ7-3egfk4fLifnRdjG-vbkbn48IJAYtCOI6olaWlC6iDRKFQhgkwVMFaAdRiicFhQKFLxy3ToBnTE60hcM2RD8jZ0jvvJjP_6HyziLY2ecPMxg_T2sr8vjTVs3lq34wuJVCpsuB4JYjta-fTwsyq5Hxd28a3XTJMMA5SIoiMHv5Bp20Xm_w9wyTllGqFNFMnS8rFNqXow3oMBfNV2OTCZlU40wc_96_Z76QZOFoCbTf_1_QJUk6Bww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513117691</pqid></control><display><type>article</type><title>Surprise</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cole, Stephen R ; Edwards, Jessie K ; Greenland, Sander</creator><creatorcontrib>Cole, Stephen R ; Edwards, Jessie K ; Greenland, Sander</creatorcontrib><description>Abstract Measures of information and surprise, such as the Shannon information value (S value), quantify the signal present in a stream of noisy data. We illustrate the use of such information measures in the context of interpreting P values as compatibility indices. S values help communicate the limited information supplied by conventional statistics and cast a critical light on cutoffs used to judge and construct those statistics. Misinterpretations of statistics may be reduced by interpreting P values and interval estimates using compatibility concepts and S values instead of “significance” and “confidence.”</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwaa136</identifier><identifier>PMID: 32648906</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Compatibility ; Confidence ; Confidence Intervals ; Data Interpretation, Statistical ; Editor's Choice ; Epidemiologic Methods ; Humans ; Statistics ; Uncertainty</subject><ispartof>American journal of epidemiology, 2021-02, Vol.190 (2), p.191-193</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-4c39976a18cf97f594695fb0296faa401a989fc9f9478c3a2707227b770f37393</citedby><cites>FETCH-LOGICAL-c440t-4c39976a18cf97f594695fb0296faa401a989fc9f9478c3a2707227b770f37393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32648906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cole, Stephen R</creatorcontrib><creatorcontrib>Edwards, Jessie K</creatorcontrib><creatorcontrib>Greenland, Sander</creatorcontrib><title>Surprise</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Abstract Measures of information and surprise, such as the Shannon information value (S value), quantify the signal present in a stream of noisy data. We illustrate the use of such information measures in the context of interpreting P values as compatibility indices. S values help communicate the limited information supplied by conventional statistics and cast a critical light on cutoffs used to judge and construct those statistics. Misinterpretations of statistics may be reduced by interpreting P values and interval estimates using compatibility concepts and S values instead of “significance” and “confidence.”</description><subject>Compatibility</subject><subject>Confidence</subject><subject>Confidence Intervals</subject><subject>Data Interpretation, Statistical</subject><subject>Editor's Choice</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEURoMotlZX7t0IIsjYm_fcjSDFFxRcqOuQxkSnTmdq0lH890Zai7pwlcU9HL4cQvYpnFJAPrRTP3x5t5ZytUH6VGhVKCbVJukDACuQKdYjOylNAShFCdukx5kSJYLqk95dF-exSn6XbAVbJ7-3egfk4fLifnRdjG-vbkbn48IJAYtCOI6olaWlC6iDRKFQhgkwVMFaAdRiicFhQKFLxy3ToBnTE60hcM2RD8jZ0jvvJjP_6HyziLY2ecPMxg_T2sr8vjTVs3lq34wuJVCpsuB4JYjta-fTwsyq5Hxd28a3XTJMMA5SIoiMHv5Bp20Xm_w9wyTllGqFNFMnS8rFNqXow3oMBfNV2OTCZlU40wc_96_Z76QZOFoCbTf_1_QJUk6Bww</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cole, Stephen R</creator><creator>Edwards, Jessie K</creator><creator>Greenland, Sander</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210201</creationdate><title>Surprise</title><author>Cole, Stephen R ; Edwards, Jessie K ; Greenland, Sander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-4c39976a18cf97f594695fb0296faa401a989fc9f9478c3a2707227b770f37393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compatibility</topic><topic>Confidence</topic><topic>Confidence Intervals</topic><topic>Data Interpretation, Statistical</topic><topic>Editor's Choice</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, Stephen R</creatorcontrib><creatorcontrib>Edwards, Jessie K</creatorcontrib><creatorcontrib>Greenland, Sander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, Stephen R</au><au>Edwards, Jessie K</au><au>Greenland, Sander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surprise</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>190</volume><issue>2</issue><spage>191</spage><epage>193</epage><pages>191-193</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Abstract Measures of information and surprise, such as the Shannon information value (S value), quantify the signal present in a stream of noisy data. We illustrate the use of such information measures in the context of interpreting P values as compatibility indices. S values help communicate the limited information supplied by conventional statistics and cast a critical light on cutoffs used to judge and construct those statistics. Misinterpretations of statistics may be reduced by interpreting P values and interval estimates using compatibility concepts and S values instead of “significance” and “confidence.”</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32648906</pmid><doi>10.1093/aje/kwaa136</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2021-02, Vol.190 (2), p.191-193
issn 0002-9262
1476-6256
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7850156
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Compatibility
Confidence
Confidence Intervals
Data Interpretation, Statistical
Editor's Choice
Epidemiologic Methods
Humans
Statistics
Uncertainty
title Surprise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surprise&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Cole,%20Stephen%20R&rft.date=2021-02-01&rft.volume=190&rft.issue=2&rft.spage=191&rft.epage=193&rft.pages=191-193&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwaa136&rft_dat=%3Cproquest_pubme%3E2513117691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513117691&rft_id=info:pmid/32648906&rft_oup_id=10.1093/aje/kwaa136&rfr_iscdi=true