Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers

Abstract Background Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2021-01, Vol.23 (1), p.44-52
Hauptverfasser: Jin, Lei, Shi, Feng, Chun, Qiuping, Chen, Hong, Ma, Yixin, Wu, Shuai, Hameed, N U Farrukh, Mei, Chunming, Lu, Junfeng, Zhang, Jun, Aibaidula, Abudumijiti, Shen, Dinggang, Wu, Jinsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 44
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 23
creator Jin, Lei
Shi, Feng
Chun, Qiuping
Chen, Hong
Ma, Yixin
Wu, Shuai
Hameed, N U Farrukh
Mei, Chunming
Lu, Junfeng
Zhang, Jun
Aibaidula, Abudumijiti
Shen, Dinggang
Wu, Jinsong
description Abstract Background Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep learning can be applied to glioma classification. Methods A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when molecular profiles are available. Results A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma histology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydrogenase and 1p/19q). Conclusion The model is capable of solving multiple classification tasks and can satisfactorily classify glioma subtypes. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.
doi_str_mv 10.1093/neuonc/noaa163
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7850049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/neuonc/noaa163</oup_id><sourcerecordid>2424101199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-403f34fceb565f471ecd5fa8f05c6d2440fb16ba3e42c5aa6bfa1c0959d5804e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERUvhyhH5SA9p7cT2JhekqqIFqRKXcrYmzjhrcOxgOxX9K_zaZrtLBSdO_phnHo_8EvKOs3POuuYi4BKDuQgRgKvmBTnhsm4q2Sr18mlfV63km2PyOufvjNVcKv6KHDe1Uk3dyhPy-zIVZ51x4KkLBb13IwaDdBWnOEPZRh9Hlwu1MdHRuzgBNR5y3nVBcTHQJbsw0gFxph4hhd1pvd7iBCX-evAuUAgDxbhyNBdwAQeavRuQuglGzE_lKXo0i4dEJ0g_MOU35MiCz_j2sJ6Sb9ef7q4-V7dfb75cXd5WRnSsVII1thHWYC-VtGLD0QzSQmuZNGqohWC256qHBkVtJIDqLXDDOtkNsmUCm1Pyce-dl37CwWAoCbye0zpcetARnP63EtxWj_Feb1rJmOhWwYeDIMWfC-aiJ5fN-pUQMC5Z16IWnHHe7dDzPWpSzDmhfX6GM70LVO8D1YdA14b3fw_3jP9JcAXO9kBc5v_JHgGLhrPO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424101199</pqid></control><display><type>article</type><title>Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jin, Lei ; Shi, Feng ; Chun, Qiuping ; Chen, Hong ; Ma, Yixin ; Wu, Shuai ; Hameed, N U Farrukh ; Mei, Chunming ; Lu, Junfeng ; Zhang, Jun ; Aibaidula, Abudumijiti ; Shen, Dinggang ; Wu, Jinsong</creator><creatorcontrib>Jin, Lei ; Shi, Feng ; Chun, Qiuping ; Chen, Hong ; Ma, Yixin ; Wu, Shuai ; Hameed, N U Farrukh ; Mei, Chunming ; Lu, Junfeng ; Zhang, Jun ; Aibaidula, Abudumijiti ; Shen, Dinggang ; Wu, Jinsong</creatorcontrib><description>Abstract Background Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep learning can be applied to glioma classification. Methods A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when molecular profiles are available. Results A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma histology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydrogenase and 1p/19q). Conclusion The model is capable of solving multiple classification tasks and can satisfactorily classify glioma subtypes. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.</description><identifier>ISSN: 1522-8517</identifier><identifier>ISSN: 1523-5866</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noaa163</identifier><identifier>PMID: 32663285</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Artificial Intelligence ; Basic and Translational Investigations ; Deep Learning ; Eosine Yellowish-(YS) ; Glioma - diagnosis ; Hematoxylin ; Humans ; Neuropathology</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2021-01, Vol.23 (1), p.44-52</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-403f34fceb565f471ecd5fa8f05c6d2440fb16ba3e42c5aa6bfa1c0959d5804e3</citedby><cites>FETCH-LOGICAL-c490t-403f34fceb565f471ecd5fa8f05c6d2440fb16ba3e42c5aa6bfa1c0959d5804e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850049/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850049/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1578,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32663285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Chun, Qiuping</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Ma, Yixin</creatorcontrib><creatorcontrib>Wu, Shuai</creatorcontrib><creatorcontrib>Hameed, N U Farrukh</creatorcontrib><creatorcontrib>Mei, Chunming</creatorcontrib><creatorcontrib>Lu, Junfeng</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Aibaidula, Abudumijiti</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><title>Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers</title><title>Neuro-oncology (Charlottesville, Va.)</title><addtitle>Neuro Oncol</addtitle><description>Abstract Background Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep learning can be applied to glioma classification. Methods A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when molecular profiles are available. Results A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma histology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydrogenase and 1p/19q). Conclusion The model is capable of solving multiple classification tasks and can satisfactorily classify glioma subtypes. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.</description><subject>Artificial Intelligence</subject><subject>Basic and Translational Investigations</subject><subject>Deep Learning</subject><subject>Eosine Yellowish-(YS)</subject><subject>Glioma - diagnosis</subject><subject>Hematoxylin</subject><subject>Humans</subject><subject>Neuropathology</subject><issn>1522-8517</issn><issn>1523-5866</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi1ERUvhyhH5SA9p7cT2JhekqqIFqRKXcrYmzjhrcOxgOxX9K_zaZrtLBSdO_phnHo_8EvKOs3POuuYi4BKDuQgRgKvmBTnhsm4q2Sr18mlfV63km2PyOufvjNVcKv6KHDe1Uk3dyhPy-zIVZ51x4KkLBb13IwaDdBWnOEPZRh9Hlwu1MdHRuzgBNR5y3nVBcTHQJbsw0gFxph4hhd1pvd7iBCX-evAuUAgDxbhyNBdwAQeavRuQuglGzE_lKXo0i4dEJ0g_MOU35MiCz_j2sJ6Sb9ef7q4-V7dfb75cXd5WRnSsVII1thHWYC-VtGLD0QzSQmuZNGqohWC256qHBkVtJIDqLXDDOtkNsmUCm1Pyce-dl37CwWAoCbye0zpcetARnP63EtxWj_Feb1rJmOhWwYeDIMWfC-aiJ5fN-pUQMC5Z16IWnHHe7dDzPWpSzDmhfX6GM70LVO8D1YdA14b3fw_3jP9JcAXO9kBc5v_JHgGLhrPO</recordid><startdate>20210130</startdate><enddate>20210130</enddate><creator>Jin, Lei</creator><creator>Shi, Feng</creator><creator>Chun, Qiuping</creator><creator>Chen, Hong</creator><creator>Ma, Yixin</creator><creator>Wu, Shuai</creator><creator>Hameed, N U Farrukh</creator><creator>Mei, Chunming</creator><creator>Lu, Junfeng</creator><creator>Zhang, Jun</creator><creator>Aibaidula, Abudumijiti</creator><creator>Shen, Dinggang</creator><creator>Wu, Jinsong</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210130</creationdate><title>Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers</title><author>Jin, Lei ; Shi, Feng ; Chun, Qiuping ; Chen, Hong ; Ma, Yixin ; Wu, Shuai ; Hameed, N U Farrukh ; Mei, Chunming ; Lu, Junfeng ; Zhang, Jun ; Aibaidula, Abudumijiti ; Shen, Dinggang ; Wu, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-403f34fceb565f471ecd5fa8f05c6d2440fb16ba3e42c5aa6bfa1c0959d5804e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Basic and Translational Investigations</topic><topic>Deep Learning</topic><topic>Eosine Yellowish-(YS)</topic><topic>Glioma - diagnosis</topic><topic>Hematoxylin</topic><topic>Humans</topic><topic>Neuropathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Chun, Qiuping</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Ma, Yixin</creatorcontrib><creatorcontrib>Wu, Shuai</creatorcontrib><creatorcontrib>Hameed, N U Farrukh</creatorcontrib><creatorcontrib>Mei, Chunming</creatorcontrib><creatorcontrib>Lu, Junfeng</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Aibaidula, Abudumijiti</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Lei</au><au>Shi, Feng</au><au>Chun, Qiuping</au><au>Chen, Hong</au><au>Ma, Yixin</au><au>Wu, Shuai</au><au>Hameed, N U Farrukh</au><au>Mei, Chunming</au><au>Lu, Junfeng</au><au>Zhang, Jun</au><au>Aibaidula, Abudumijiti</au><au>Shen, Dinggang</au><au>Wu, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><addtitle>Neuro Oncol</addtitle><date>2021-01-30</date><risdate>2021</risdate><volume>23</volume><issue>1</issue><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>1522-8517</issn><issn>1523-5866</issn><eissn>1523-5866</eissn><abstract>Abstract Background Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep learning can be applied to glioma classification. Methods A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when molecular profiles are available. Results A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma histology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydrogenase and 1p/19q). Conclusion The model is capable of solving multiple classification tasks and can satisfactorily classify glioma subtypes. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>32663285</pmid><doi>10.1093/neuonc/noaa163</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2021-01, Vol.23 (1), p.44-52
issn 1522-8517
1523-5866
1523-5866
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7850049
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Artificial Intelligence
Basic and Translational Investigations
Deep Learning
Eosine Yellowish-(YS)
Glioma - diagnosis
Hematoxylin
Humans
Neuropathology
title Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20neuropathologist%20for%20glioma%20classification%20using%20deep%20learning%20on%20hematoxylin%20and%20eosin%20stained%20slide%20images%20and%20molecular%20markers&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Jin,%20Lei&rft.date=2021-01-30&rft.volume=23&rft.issue=1&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noaa163&rft_dat=%3Cproquest_pubme%3E2424101199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424101199&rft_id=info:pmid/32663285&rft_oup_id=10.1093/neuonc/noaa163&rfr_iscdi=true