Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels

Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-01, Vol.118 (4), p.1-7
Hauptverfasser: Batalov, Ivan, Stevens, Kelly R., DeForest, Cole A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 4
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Batalov, Ivan
Stevens, Kelly R.
DeForest, Cole A.
description Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.
doi_str_mv 10.1073/pnas.2014194118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006041</jstor_id><sourcerecordid>27006041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-d604889c58a456d43fbe32e7236346cca2359df32c2f4c44c262d4592423b2473</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRCIbgtnTqAcuaT1xyRxLkioAopUqRzas-XYk11XiZ3aTqXy6_Fqy0JPI8178-bNPEI-MHrOaCcuFq_TOacMWA-MyVdkw2jP6hZ6-ppsKOVdLYHDCTlN6Z5S2jeSviUnQkAr267ZkIdfu5DDonPG6NFWgwtzmNCsE1ZunsPgJvdbZxd8lUO1XZ3FKu8iYm3djD4VQE-VwWmqRp3LjK-8zmsszSWGjM7Xg05FePdkY9jilN6RN6OeEr5_rmfk7vu328ur-vrmx8_Lr9e1AclybVsKUvamkRqa1oIYBxQcOy7aYt4YzUXT21Fww0cwAIa33ELTc-Bi4NCJM_LloLusw4zWoM_FlVqim3V8UkE79RLxbqe24VF1EmTLWBH4_CwQw8OKKavZpf2l2mNYkypLeii_72WhXhyoJoaUIo7HNYyqfVBqH5T6F1SZ-PS_uyP_bzKF8PFAuE85xCPOO0rLZ5j4A03xm_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479420198</pqid></control><display><type>article</type><title>Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Batalov, Ivan ; Stevens, Kelly R. ; DeForest, Cole A.</creator><creatorcontrib>Batalov, Ivan ; Stevens, Kelly R. ; DeForest, Cole A.</creatorcontrib><description>Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2014194118</identifier><identifier>PMID: 33468675</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Products - chemistry ; Biological Products - pharmacology ; Biological Sciences ; Cell Culture Techniques - methods ; Cell Differentiation - drug effects ; Cell Line ; Cell Lineage ; Humans ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Intercellular Signaling Peptides and Proteins - chemistry ; Intercellular Signaling Peptides and Proteins - pharmacology ; Polymers - chemistry ; Proteins - chemistry ; Tissue Engineering - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (4), p.1-7</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-d604889c58a456d43fbe32e7236346cca2359df32c2f4c44c262d4592423b2473</citedby><cites>FETCH-LOGICAL-c481t-d604889c58a456d43fbe32e7236346cca2359df32c2f4c44c262d4592423b2473</cites><orcidid>0000-0003-2787-0703 ; 0000-0003-0337-3577 ; 0000-0002-4024-2990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006041$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006041$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33468675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Batalov, Ivan</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>DeForest, Cole A.</creatorcontrib><title>Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.</description><subject>Biological Products - chemistry</subject><subject>Biological Products - pharmacology</subject><subject>Biological Sciences</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Cell Lineage</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Intercellular Signaling Peptides and Proteins - chemistry</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Polymers - chemistry</subject><subject>Proteins - chemistry</subject><subject>Tissue Engineering - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1v1DAQtRCIbgtnTqAcuaT1xyRxLkioAopUqRzas-XYk11XiZ3aTqXy6_Fqy0JPI8178-bNPEI-MHrOaCcuFq_TOacMWA-MyVdkw2jP6hZ6-ppsKOVdLYHDCTlN6Z5S2jeSviUnQkAr267ZkIdfu5DDonPG6NFWgwtzmNCsE1ZunsPgJvdbZxd8lUO1XZ3FKu8iYm3djD4VQE-VwWmqRp3LjK-8zmsszSWGjM7Xg05FePdkY9jilN6RN6OeEr5_rmfk7vu328ur-vrmx8_Lr9e1AclybVsKUvamkRqa1oIYBxQcOy7aYt4YzUXT21Fww0cwAIa33ELTc-Bi4NCJM_LloLusw4zWoM_FlVqim3V8UkE79RLxbqe24VF1EmTLWBH4_CwQw8OKKavZpf2l2mNYkypLeii_72WhXhyoJoaUIo7HNYyqfVBqH5T6F1SZ-PS_uyP_bzKF8PFAuE85xCPOO0rLZ5j4A03xm_g</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Batalov, Ivan</creator><creator>Stevens, Kelly R.</creator><creator>DeForest, Cole A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2787-0703</orcidid><orcidid>https://orcid.org/0000-0003-0337-3577</orcidid><orcidid>https://orcid.org/0000-0002-4024-2990</orcidid></search><sort><creationdate>20210126</creationdate><title>Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels</title><author>Batalov, Ivan ; Stevens, Kelly R. ; DeForest, Cole A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-d604889c58a456d43fbe32e7236346cca2359df32c2f4c44c262d4592423b2473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Products - chemistry</topic><topic>Biological Products - pharmacology</topic><topic>Biological Sciences</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Cell Lineage</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Intercellular Signaling Peptides and Proteins - chemistry</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Polymers - chemistry</topic><topic>Proteins - chemistry</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batalov, Ivan</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>DeForest, Cole A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batalov, Ivan</au><au>Stevens, Kelly R.</au><au>DeForest, Cole A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>118</volume><issue>4</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33468675</pmid><doi>10.1073/pnas.2014194118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2787-0703</orcidid><orcidid>https://orcid.org/0000-0003-0337-3577</orcidid><orcidid>https://orcid.org/0000-0002-4024-2990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (4), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848611
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Products - chemistry
Biological Products - pharmacology
Biological Sciences
Cell Culture Techniques - methods
Cell Differentiation - drug effects
Cell Line
Cell Lineage
Humans
Hydrogels - chemistry
Hydrogels - pharmacology
Intercellular Signaling Peptides and Proteins - chemistry
Intercellular Signaling Peptides and Proteins - pharmacology
Polymers - chemistry
Proteins - chemistry
Tissue Engineering - methods
title Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photopatterned%20biomolecule%20immobilization%20to%20guide%20three-dimensional%20cell%20fate%20in%20natural%20protein-based%20hydrogels&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Batalov,%20Ivan&rft.date=2021-01-26&rft.volume=118&rft.issue=4&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2014194118&rft_dat=%3Cjstor_pubme%3E27006041%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479420198&rft_id=info:pmid/33468675&rft_jstor_id=27006041&rfr_iscdi=true