Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit
Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions...
Gespeichert in:
Veröffentlicht in: | Horticulture research 2021-02, Vol.8 (1), p.31, Article 31 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Horticulture research |
container_volume | 8 |
creator | Li, Xin Chai, Yingfang Yang, Hongbin Tian, Zhen Li, Chengyang Xu, Rangwei Shi, Chunmei Zhu, Feng Zeng, Yunliu Deng, Xiuxin Wang, Pengwei Cheng, Yunjiang |
description | Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants. |
doi_str_mv | 10.1038/s41438-021-00470-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484159001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-8ebc71c90149b1ad1ee43d2984e84123f70633e02c7618cd7da874c23a664f5a3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoKqN_wIUUXFdvHk0yG0EGXyC40XXIpOlMpG1qkjr4780442vjKgnnu-fem4PQCYZzDFReRIYZlSUQXAIwAeVqBx0SqEgpiOC7-c45KbnEcICOY3wBAFwxQiuxjw4orbAUIA6RuY--1cn5vtB9XRjfDTrk95sthuCT9Z0zWdHte3Sx8E3RueTN0vd1cLpogu-KtMzs2A5rNbjB9q5fFMalMMYMjC4dob1Gt9Eeb88Jer65fprdlQ-Pt_ezq4fSVMBTKe3cCGymgNl0jnWNrWW0JlPJrGSY0EYAp9QCMYJjaWpRaymYIVRzzppK0wm63PgO47yztbF9CrpVQ3CdDu_Ka6f-Kr1bqoV_U0IyCRhng7OtQfCvo41Jvfgx5OWjIizPUE3zJ2aKbCgTfIzBNt8dMKh1NmqTjcrZqM9s1CoXnf6e7bvkK4kM0A0Qs9QvbPjp_Y_tB3vUnJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484159001</pqid></control><display><type>article</type><title>Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Oxford Journals Open Access Collection</source><source>Nature Free</source><source>PubMed Central</source><creator>Li, Xin ; Chai, Yingfang ; Yang, Hongbin ; Tian, Zhen ; Li, Chengyang ; Xu, Rangwei ; Shi, Chunmei ; Zhu, Feng ; Zeng, Yunliu ; Deng, Xiuxin ; Wang, Pengwei ; Cheng, Yunjiang</creator><creatorcontrib>Li, Xin ; Chai, Yingfang ; Yang, Hongbin ; Tian, Zhen ; Li, Chengyang ; Xu, Rangwei ; Shi, Chunmei ; Zhu, Feng ; Zeng, Yunliu ; Deng, Xiuxin ; Wang, Pengwei ; Cheng, Yunjiang</creatorcontrib><description>Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.</description><identifier>ISSN: 2662-6810</identifier><identifier>EISSN: 2052-7276</identifier><identifier>DOI: 10.1038/s41438-021-00470-w</identifier><identifier>PMID: 33518707</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449 ; 631/80 ; Agriculture ; Amino acids ; Ascorbic acid ; Biomedical and Life Sciences ; Biosynthesis ; Centrifugation ; Citrus fruits ; Citrus maxima ; Citrus reticulata ; Citrus sinensis ; Citrus unshiu ; Coverage ; Ecology ; Fatty acids ; Food quality ; Fruits ; Life Sciences ; Localization ; Mandarins ; Metabolic pathways ; Metabolism ; Metabolites ; Mitochondria ; Oxidative metabolism ; Oxidative phosphorylation ; Phosphorylation ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Sciences ; Proteins ; Pulp ; Pyruvic acid ; Ripening ; Secondary metabolites ; Tricarboxylic acid cycle ; γ-Aminobutyric acid</subject><ispartof>Horticulture research, 2021-02, Vol.8 (1), p.31, Article 31</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-8ebc71c90149b1ad1ee43d2984e84123f70633e02c7618cd7da874c23a664f5a3</citedby><cites>FETCH-LOGICAL-c506t-8ebc71c90149b1ad1ee43d2984e84123f70633e02c7618cd7da874c23a664f5a3</cites><orcidid>0000-0003-4490-4514 ; 0000-0001-8882-3447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33518707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Chai, Yingfang</creatorcontrib><creatorcontrib>Yang, Hongbin</creatorcontrib><creatorcontrib>Tian, Zhen</creatorcontrib><creatorcontrib>Li, Chengyang</creatorcontrib><creatorcontrib>Xu, Rangwei</creatorcontrib><creatorcontrib>Shi, Chunmei</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Zeng, Yunliu</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Wang, Pengwei</creatorcontrib><creatorcontrib>Cheng, Yunjiang</creatorcontrib><title>Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit</title><title>Horticulture research</title><addtitle>Hortic Res</addtitle><addtitle>Hortic Res</addtitle><description>Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.</description><subject>631/449</subject><subject>631/80</subject><subject>Agriculture</subject><subject>Amino acids</subject><subject>Ascorbic acid</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Centrifugation</subject><subject>Citrus fruits</subject><subject>Citrus maxima</subject><subject>Citrus reticulata</subject><subject>Citrus sinensis</subject><subject>Citrus unshiu</subject><subject>Coverage</subject><subject>Ecology</subject><subject>Fatty acids</subject><subject>Food quality</subject><subject>Fruits</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Mandarins</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Proteins</subject><subject>Pulp</subject><subject>Pyruvic acid</subject><subject>Ripening</subject><subject>Secondary metabolites</subject><subject>Tricarboxylic acid cycle</subject><subject>γ-Aminobutyric acid</subject><issn>2662-6810</issn><issn>2052-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxDAUhYMoKqN_wIUUXFdvHk0yG0EGXyC40XXIpOlMpG1qkjr4780442vjKgnnu-fem4PQCYZzDFReRIYZlSUQXAIwAeVqBx0SqEgpiOC7-c45KbnEcICOY3wBAFwxQiuxjw4orbAUIA6RuY--1cn5vtB9XRjfDTrk95sthuCT9Z0zWdHte3Sx8E3RueTN0vd1cLpogu-KtMzs2A5rNbjB9q5fFMalMMYMjC4dob1Gt9Eeb88Jer65fprdlQ-Pt_ezq4fSVMBTKe3cCGymgNl0jnWNrWW0JlPJrGSY0EYAp9QCMYJjaWpRaymYIVRzzppK0wm63PgO47yztbF9CrpVQ3CdDu_Ka6f-Kr1bqoV_U0IyCRhng7OtQfCvo41Jvfgx5OWjIizPUE3zJ2aKbCgTfIzBNt8dMKh1NmqTjcrZqM9s1CoXnf6e7bvkK4kM0A0Qs9QvbPjp_Y_tB3vUnJs</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Xin</creator><creator>Chai, Yingfang</creator><creator>Yang, Hongbin</creator><creator>Tian, Zhen</creator><creator>Li, Chengyang</creator><creator>Xu, Rangwei</creator><creator>Shi, Chunmei</creator><creator>Zhu, Feng</creator><creator>Zeng, Yunliu</creator><creator>Deng, Xiuxin</creator><creator>Wang, Pengwei</creator><creator>Cheng, Yunjiang</creator><general>Nature Publishing Group UK</general><general>Oxford University Press</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid><orcidid>https://orcid.org/0000-0001-8882-3447</orcidid></search><sort><creationdate>20210201</creationdate><title>Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit</title><author>Li, Xin ; Chai, Yingfang ; Yang, Hongbin ; Tian, Zhen ; Li, Chengyang ; Xu, Rangwei ; Shi, Chunmei ; Zhu, Feng ; Zeng, Yunliu ; Deng, Xiuxin ; Wang, Pengwei ; Cheng, Yunjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-8ebc71c90149b1ad1ee43d2984e84123f70633e02c7618cd7da874c23a664f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/449</topic><topic>631/80</topic><topic>Agriculture</topic><topic>Amino acids</topic><topic>Ascorbic acid</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Centrifugation</topic><topic>Citrus fruits</topic><topic>Citrus maxima</topic><topic>Citrus reticulata</topic><topic>Citrus sinensis</topic><topic>Citrus unshiu</topic><topic>Coverage</topic><topic>Ecology</topic><topic>Fatty acids</topic><topic>Food quality</topic><topic>Fruits</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Mandarins</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Proteins</topic><topic>Pulp</topic><topic>Pyruvic acid</topic><topic>Ripening</topic><topic>Secondary metabolites</topic><topic>Tricarboxylic acid cycle</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Chai, Yingfang</creatorcontrib><creatorcontrib>Yang, Hongbin</creatorcontrib><creatorcontrib>Tian, Zhen</creatorcontrib><creatorcontrib>Li, Chengyang</creatorcontrib><creatorcontrib>Xu, Rangwei</creatorcontrib><creatorcontrib>Shi, Chunmei</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Zeng, Yunliu</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Wang, Pengwei</creatorcontrib><creatorcontrib>Cheng, Yunjiang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Horticulture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin</au><au>Chai, Yingfang</au><au>Yang, Hongbin</au><au>Tian, Zhen</au><au>Li, Chengyang</au><au>Xu, Rangwei</au><au>Shi, Chunmei</au><au>Zhu, Feng</au><au>Zeng, Yunliu</au><au>Deng, Xiuxin</au><au>Wang, Pengwei</au><au>Cheng, Yunjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit</atitle><jtitle>Horticulture research</jtitle><stitle>Hortic Res</stitle><addtitle>Hortic Res</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>31</spage><pages>31-</pages><artnum>31</artnum><issn>2662-6810</issn><eissn>2052-7276</eissn><abstract>Mitochondria are crucial for the production of primary and secondary metabolites, which largely determine the quality of fruit. However, a method for isolating high-quality mitochondria is currently not available in citrus fruit, preventing high-throughput characterization of mitochondrial functions. Here, based on differential and discontinuous Percoll density gradient centrifugation, we devised a universal protocol for isolating mitochondria from the pulp of four major citrus species, including satsuma mandarin, ponkan mandarin, sweet orange, and pummelo. Western blot analysis and microscopy confirmed the high purity and intactness of the isolated mitochondria. By using this protocol coupled with a label-free proteomic approach, a total of 3353 nonredundant proteins were identified. Comparison of the four mitochondrial proteomes revealed that the proteins commonly detected in all proteomes participate in several typical metabolic pathways (such as tricarboxylic acid cycle, pyruvate metabolism, and oxidative phosphorylation) and pathways closely related to fruit quality (such as γ-aminobutyric acid (GABA) shunt, ascorbate metabolism, and biosynthesis of secondary metabolites). In addition, differentially abundant proteins (DAPs) between different types of species were also identified; these were found to be mainly involved in fatty acid and amino acid metabolism and were further confirmed to be localized to the mitochondria by subcellular localization analysis. In summary, the proposed protocol for the isolation of highly pure mitochondria from different citrus fruits may be used to obtain high-coverage mitochondrial proteomes, which can help to establish the association between mitochondrial metabolism and fruit storability or quality characteristics of different species and lay the foundation for discovering novel functions of mitochondria in plants.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33518707</pmid><doi>10.1038/s41438-021-00470-w</doi><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid><orcidid>https://orcid.org/0000-0001-8882-3447</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-6810 |
ispartof | Horticulture research, 2021-02, Vol.8 (1), p.31, Article 31 |
issn | 2662-6810 2052-7276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7848011 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Oxford Journals Open Access Collection; Nature Free; PubMed Central |
subjects | 631/449 631/80 Agriculture Amino acids Ascorbic acid Biomedical and Life Sciences Biosynthesis Centrifugation Citrus fruits Citrus maxima Citrus reticulata Citrus sinensis Citrus unshiu Coverage Ecology Fatty acids Food quality Fruits Life Sciences Localization Mandarins Metabolic pathways Metabolism Metabolites Mitochondria Oxidative metabolism Oxidative phosphorylation Phosphorylation Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Sciences Proteins Pulp Pyruvic acid Ripening Secondary metabolites Tricarboxylic acid cycle γ-Aminobutyric acid |
title | Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20and%20comparative%20proteomic%20analysis%20of%20mitochondria%20from%20the%20pulp%20of%20ripening%20citrus%20fruit&rft.jtitle=Horticulture%20research&rft.au=Li,%20Xin&rft.date=2021-02-01&rft.volume=8&rft.issue=1&rft.spage=31&rft.pages=31-&rft.artnum=31&rft.issn=2662-6810&rft.eissn=2052-7276&rft_id=info:doi/10.1038/s41438-021-00470-w&rft_dat=%3Cproquest_pubme%3E2484159001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484159001&rft_id=info:pmid/33518707&rfr_iscdi=true |