Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior

Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2021, Vol.2021, p.8865582-12
Hauptverfasser: Zhao, Di, Huang, Yanhu, Zhao, Feng, Qin, Binyi, Zheng, Jincun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 8865582
container_title Computational and mathematical methods in medicine
container_volume 2021
creator Zhao, Di
Huang, Yanhu
Zhao, Feng
Qin, Binyi
Zheng, Jincun
description Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.
doi_str_mv 10.1155/2021/8865582
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487432825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</originalsourceid><addsrcrecordid>eNp9kctLxDAQh4Movm-epUdBq3k0TfYiyPoERVkVvYU0ma6RNq1Jd8X_3uqui148zcB8883AD6Edgg8J4fyIYkqOpMw5l3QJrRORyTQXRC4vevy8hjZifMWYE8HJKlpjjHNKGV1HbgQlBPAG0tPgpuCTR28hRF23FdjkZpRc1XoMyQhM42MXJqZzTQ9F58fJk55CBV1y3-oQXfeRDr8Z7Xy_egrQzpfvgmvCFlopdRVhe1430cP52cPwMr2-vbganlynJqO4SweZLXBeUMYlL-mAC4lpwQorWCkItqbUVuYG89xQKbEpCmMFZFnOSK5BZmwTHc-07aSowRrw_UOVaoOrdfhQjXbq78S7FzVupkrIXjIQvWBvLgjN2wRip2oXDVSV9tBMoqKZFBmjkvIePZihJjQxBigXZwhWX-Gor3DUPJwe3_392gL-SaMH9mfAi_NWv7v_dZ9Zgpje</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487432825</pqid></control><display><type>article</type><title>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhao, Di ; Huang, Yanhu ; Zhao, Feng ; Qin, Binyi ; Zheng, Jincun</creator><contributor>Chuzhanova, Nadia A.</contributor><creatorcontrib>Zhao, Di ; Huang, Yanhu ; Zhao, Feng ; Qin, Binyi ; Zheng, Jincun ; Chuzhanova, Nadia A.</creatorcontrib><description>Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/8865582</identifier><identifier>PMID: 33552232</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Computational Biology ; Data Compression ; Databases, Factual - statistics &amp; numerical data ; Deep Learning ; Humans ; Image Enhancement ; Image Interpretation, Computer-Assisted - statistics &amp; numerical data ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Wavelet Analysis</subject><ispartof>Computational and mathematical methods in medicine, 2021, Vol.2021, p.8865582-12</ispartof><rights>Copyright © 2021 Di Zhao et al.</rights><rights>Copyright © 2021 Di Zhao et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</citedby><cites>FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</cites><orcidid>0000-0002-0447-5594 ; 0000-0001-5912-1331 ; 0000-0001-8783-6166 ; 0000-0002-5730-2208 ; 0000-0003-1675-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846397/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846397/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,27904,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33552232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chuzhanova, Nadia A.</contributor><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Huang, Yanhu</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Qin, Binyi</creatorcontrib><creatorcontrib>Zheng, Jincun</creatorcontrib><title>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Computational Biology</subject><subject>Data Compression</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Enhancement</subject><subject>Image Interpretation, Computer-Assisted - statistics &amp; numerical data</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Wavelet Analysis</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctLxDAQh4Movm-epUdBq3k0TfYiyPoERVkVvYU0ma6RNq1Jd8X_3uqui148zcB8883AD6Edgg8J4fyIYkqOpMw5l3QJrRORyTQXRC4vevy8hjZifMWYE8HJKlpjjHNKGV1HbgQlBPAG0tPgpuCTR28hRF23FdjkZpRc1XoMyQhM42MXJqZzTQ9F58fJk55CBV1y3-oQXfeRDr8Z7Xy_egrQzpfvgmvCFlopdRVhe1430cP52cPwMr2-vbganlynJqO4SweZLXBeUMYlL-mAC4lpwQorWCkItqbUVuYG89xQKbEpCmMFZFnOSK5BZmwTHc-07aSowRrw_UOVaoOrdfhQjXbq78S7FzVupkrIXjIQvWBvLgjN2wRip2oXDVSV9tBMoqKZFBmjkvIePZihJjQxBigXZwhWX-Gor3DUPJwe3_392gL-SaMH9mfAi_NWv7v_dZ9Zgpje</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhao, Di</creator><creator>Huang, Yanhu</creator><creator>Zhao, Feng</creator><creator>Qin, Binyi</creator><creator>Zheng, Jincun</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0447-5594</orcidid><orcidid>https://orcid.org/0000-0001-5912-1331</orcidid><orcidid>https://orcid.org/0000-0001-8783-6166</orcidid><orcidid>https://orcid.org/0000-0002-5730-2208</orcidid><orcidid>https://orcid.org/0000-0003-1675-6948</orcidid></search><sort><creationdate>2021</creationdate><title>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</title><author>Zhao, Di ; Huang, Yanhu ; Zhao, Feng ; Qin, Binyi ; Zheng, Jincun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Computational Biology</topic><topic>Data Compression</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Enhancement</topic><topic>Image Interpretation, Computer-Assisted - statistics &amp; numerical data</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Wavelet Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Huang, Yanhu</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Qin, Binyi</creatorcontrib><creatorcontrib>Zheng, Jincun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Di</au><au>Huang, Yanhu</au><au>Zhao, Feng</au><au>Qin, Binyi</au><au>Zheng, Jincun</au><au>Chuzhanova, Nadia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>8865582</spage><epage>12</epage><pages>8865582-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33552232</pmid><doi>10.1155/2021/8865582</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0447-5594</orcidid><orcidid>https://orcid.org/0000-0001-5912-1331</orcidid><orcidid>https://orcid.org/0000-0001-8783-6166</orcidid><orcidid>https://orcid.org/0000-0002-5730-2208</orcidid><orcidid>https://orcid.org/0000-0003-1675-6948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2021, Vol.2021, p.8865582-12
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846397
source MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Brain - diagnostic imaging
Computational Biology
Data Compression
Databases, Factual - statistics & numerical data
Deep Learning
Humans
Image Enhancement
Image Interpretation, Computer-Assisted - statistics & numerical data
Magnetic Resonance Imaging - statistics & numerical data
Wavelet Analysis
title Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reference-Driven%20Undersampled%20MR%20Image%20Reconstruction%20Using%20Wavelet%20Sparsity-Constrained%20Deep%20Image%20Prior&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Zhao,%20Di&rft.date=2021&rft.volume=2021&rft.spage=8865582&rft.epage=12&rft.pages=8865582-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/8865582&rft_dat=%3Cproquest_pubme%3E2487432825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487432825&rft_id=info:pmid/33552232&rfr_iscdi=true