Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network train...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2021, Vol.2021, p.8865582-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 8865582 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2021 |
creator | Zhao, Di Huang, Yanhu Zhao, Feng Qin, Binyi Zheng, Jincun |
description | Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements. |
doi_str_mv | 10.1155/2021/8865582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487432825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</originalsourceid><addsrcrecordid>eNp9kctLxDAQh4Movm-epUdBq3k0TfYiyPoERVkVvYU0ma6RNq1Jd8X_3uqui148zcB8883AD6Edgg8J4fyIYkqOpMw5l3QJrRORyTQXRC4vevy8hjZifMWYE8HJKlpjjHNKGV1HbgQlBPAG0tPgpuCTR28hRF23FdjkZpRc1XoMyQhM42MXJqZzTQ9F58fJk55CBV1y3-oQXfeRDr8Z7Xy_egrQzpfvgmvCFlopdRVhe1430cP52cPwMr2-vbganlynJqO4SweZLXBeUMYlL-mAC4lpwQorWCkItqbUVuYG89xQKbEpCmMFZFnOSK5BZmwTHc-07aSowRrw_UOVaoOrdfhQjXbq78S7FzVupkrIXjIQvWBvLgjN2wRip2oXDVSV9tBMoqKZFBmjkvIePZihJjQxBigXZwhWX-Gor3DUPJwe3_392gL-SaMH9mfAi_NWv7v_dZ9Zgpje</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487432825</pqid></control><display><type>article</type><title>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhao, Di ; Huang, Yanhu ; Zhao, Feng ; Qin, Binyi ; Zheng, Jincun</creator><contributor>Chuzhanova, Nadia A.</contributor><creatorcontrib>Zhao, Di ; Huang, Yanhu ; Zhao, Feng ; Qin, Binyi ; Zheng, Jincun ; Chuzhanova, Nadia A.</creatorcontrib><description>Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/8865582</identifier><identifier>PMID: 33552232</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Computational Biology ; Data Compression ; Databases, Factual - statistics & numerical data ; Deep Learning ; Humans ; Image Enhancement ; Image Interpretation, Computer-Assisted - statistics & numerical data ; Magnetic Resonance Imaging - statistics & numerical data ; Wavelet Analysis</subject><ispartof>Computational and mathematical methods in medicine, 2021, Vol.2021, p.8865582-12</ispartof><rights>Copyright © 2021 Di Zhao et al.</rights><rights>Copyright © 2021 Di Zhao et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</citedby><cites>FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</cites><orcidid>0000-0002-0447-5594 ; 0000-0001-5912-1331 ; 0000-0001-8783-6166 ; 0000-0002-5730-2208 ; 0000-0003-1675-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846397/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846397/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,27904,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33552232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chuzhanova, Nadia A.</contributor><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Huang, Yanhu</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Qin, Binyi</creatorcontrib><creatorcontrib>Zheng, Jincun</creatorcontrib><title>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Computational Biology</subject><subject>Data Compression</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Enhancement</subject><subject>Image Interpretation, Computer-Assisted - statistics & numerical data</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Wavelet Analysis</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctLxDAQh4Movm-epUdBq3k0TfYiyPoERVkVvYU0ma6RNq1Jd8X_3uqui148zcB8883AD6Edgg8J4fyIYkqOpMw5l3QJrRORyTQXRC4vevy8hjZifMWYE8HJKlpjjHNKGV1HbgQlBPAG0tPgpuCTR28hRF23FdjkZpRc1XoMyQhM42MXJqZzTQ9F58fJk55CBV1y3-oQXfeRDr8Z7Xy_egrQzpfvgmvCFlopdRVhe1430cP52cPwMr2-vbganlynJqO4SweZLXBeUMYlL-mAC4lpwQorWCkItqbUVuYG89xQKbEpCmMFZFnOSK5BZmwTHc-07aSowRrw_UOVaoOrdfhQjXbq78S7FzVupkrIXjIQvWBvLgjN2wRip2oXDVSV9tBMoqKZFBmjkvIePZihJjQxBigXZwhWX-Gor3DUPJwe3_392gL-SaMH9mfAi_NWv7v_dZ9Zgpje</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhao, Di</creator><creator>Huang, Yanhu</creator><creator>Zhao, Feng</creator><creator>Qin, Binyi</creator><creator>Zheng, Jincun</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0447-5594</orcidid><orcidid>https://orcid.org/0000-0001-5912-1331</orcidid><orcidid>https://orcid.org/0000-0001-8783-6166</orcidid><orcidid>https://orcid.org/0000-0002-5730-2208</orcidid><orcidid>https://orcid.org/0000-0003-1675-6948</orcidid></search><sort><creationdate>2021</creationdate><title>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</title><author>Zhao, Di ; Huang, Yanhu ; Zhao, Feng ; Qin, Binyi ; Zheng, Jincun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-94db06b23585f2957802b3bd73f710dcfad86c056c2880cbbcd7e446316ae843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Computational Biology</topic><topic>Data Compression</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Enhancement</topic><topic>Image Interpretation, Computer-Assisted - statistics & numerical data</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Wavelet Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Huang, Yanhu</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Qin, Binyi</creatorcontrib><creatorcontrib>Zheng, Jincun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Di</au><au>Huang, Yanhu</au><au>Zhao, Feng</au><au>Qin, Binyi</au><au>Zheng, Jincun</au><au>Chuzhanova, Nadia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>8865582</spage><epage>12</epage><pages>8865582-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, high-quality patient-based datasets for network training. In this paper, we propose a novel deep learning-based method for undersampled MR image reconstruction that does not require pre-training procedure and pre-training datasets. The proposed reference-driven method using wavelet sparsity-constrained deep image prior (RWS-DIP) is based on the DIP framework and thereby reduces the dependence on datasets. Moreover, RWS-DIP explores and introduces structure and sparsity priors into network learning to improve the efficiency of learning. By employing a high-resolution reference image as the network input, RWS-DIP incorporates structural information into network. RWS-DIP also uses the wavelet sparsity to further enrich the implicit regularization of traditional DIP by formulating the training of network parameters as a constrained optimization problem, which is solved using the alternating direction method of multipliers (ADMM) algorithm. Experiments on in vivo MR scans have demonstrated that the RWS-DIP method can reconstruct MR images more accurately and preserve features and textures from undersampled k-space measurements.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33552232</pmid><doi>10.1155/2021/8865582</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0447-5594</orcidid><orcidid>https://orcid.org/0000-0001-5912-1331</orcidid><orcidid>https://orcid.org/0000-0001-8783-6166</orcidid><orcidid>https://orcid.org/0000-0002-5730-2208</orcidid><orcidid>https://orcid.org/0000-0003-1675-6948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2021, Vol.2021, p.8865582-12 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846397 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Brain - diagnostic imaging Computational Biology Data Compression Databases, Factual - statistics & numerical data Deep Learning Humans Image Enhancement Image Interpretation, Computer-Assisted - statistics & numerical data Magnetic Resonance Imaging - statistics & numerical data Wavelet Analysis |
title | Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reference-Driven%20Undersampled%20MR%20Image%20Reconstruction%20Using%20Wavelet%20Sparsity-Constrained%20Deep%20Image%20Prior&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Zhao,%20Di&rft.date=2021&rft.volume=2021&rft.spage=8865582&rft.epage=12&rft.pages=8865582-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/8865582&rft_dat=%3Cproquest_pubme%3E2487432825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487432825&rft_id=info:pmid/33552232&rfr_iscdi=true |