PI3K/AKT signaling drives titanium-induced angiogenic stimulus
Although osseointegration and clinical success of titanium (Ti)-implanted materials depend on neovascularization in the reactional peri-implant tissue, very little has been achieved considering the Ti-molecules release on the behavior of endothelial cells. To address this issue, we challenged endoth...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2021, Vol.32 (1), p.18-18, Article 18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 32 |
creator | Martins, Bruna Rodrigues Pinto, Thais Silva da Costa Fernandes, Célio Junior Bezerra, Fábio Zambuzzi, Willian Fernando |
description | Although osseointegration and clinical success of titanium (Ti)-implanted materials depend on neovascularization in the reactional peri-implant tissue, very little has been achieved considering the Ti-molecules release on the behavior of endothelial cells. To address this issue, we challenged endothelial cells (HUVECs) with Ti-enriched medium obtained from two types of commercial titanium surfaces [presenting or not dual-acid etching (DAE)] up to 72 h to allow molecular machinery analysis. Our data show that the Ti-enriched medium provokes significant stimulus of angiogenesis-related machinery in endothelial cells by upexpressing VEGFR1, VEGFR2, VEGF, eNOS, and iNOS genes, while the PI3K/Akt signaling pathway was also significantly enhanced. As PI3K/AKT signaling was related to angiogenesis in response to vascular endothelial growth factor (VEGF), we addressed the importance of PI3K/Akt upon Ti-enriched medium responses by concomitantly treating the cells with wortmannin, a well-known PI3K inhibitor. Wortmannin suppressed the angiogenic factors, because VEGF, VEGFR1, and eNOS genes were downregulated in those cells, highlighting the importance of PI3K/AKT signaling on driving angiogenic phenotype and angiogenesis performance within the peri-implant tissue reaction. In conjunction, these data reinforce that titanium-implantable devices modify the metabolism of surrounding cells, such as endothelial cells, probably coupling osteogenesis and angiogenesis processes in peri-implant tissue and then contributing to successfully osseointegration of biomedical titanium-based devices. |
doi_str_mv | 10.1007/s10856-020-06473-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7840643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2482664083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-ec8084720da46f423ded41be61a79cb9b4546d518e8d830c791e49821bcdcbbb3</originalsourceid><addsrcrecordid>eNp9kclOwzAQhi0EgrK8AAcUiQuX0PGWOBckVLFUIMGhnC3HdoNR4oCdVOLtSVsoy4GTLc03v8fzIXSM4RwD5OOIQfAsBQIpZCynqdhCI8yHCxNUbKMRFDxPGaewh_ZjfAEAVnC-i_Yo5ZDRXIzQxeOU3o0v72ZJdJVXtfNVYoJb2Jh0rlPe9U3qvOm1NYnylWsr651OYueavu7jIdqZqzrao8_zAD1dX80mt-n9w810cnmfao5xl1otQLCcgFEsmzNCjTUMlzbDKi90WZSMs8xwLKwwgoLOC2xZIQgutdFlWdIDdLHOfe3LxhptfRdULV-Da1R4l61y8nfFu2dZtQuZCzbshg4BZ58BoX3rbexk46K2da28bfsoCRMkyxiIJXr6B31p-zDsZkVhhglZUWRN6dDGGOx8MwwGudQj13rkoEeu9EgxNJ38_Mam5cvHANA1EIeSr2z4fvuf2A8_z5sB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481412283</pqid></control><display><type>article</type><title>PI3K/AKT signaling drives titanium-induced angiogenic stimulus</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Martins, Bruna Rodrigues ; Pinto, Thais Silva ; da Costa Fernandes, Célio Junior ; Bezerra, Fábio ; Zambuzzi, Willian Fernando</creator><creatorcontrib>Martins, Bruna Rodrigues ; Pinto, Thais Silva ; da Costa Fernandes, Célio Junior ; Bezerra, Fábio ; Zambuzzi, Willian Fernando</creatorcontrib><description>Although osseointegration and clinical success of titanium (Ti)-implanted materials depend on neovascularization in the reactional peri-implant tissue, very little has been achieved considering the Ti-molecules release on the behavior of endothelial cells. To address this issue, we challenged endothelial cells (HUVECs) with Ti-enriched medium obtained from two types of commercial titanium surfaces [presenting or not dual-acid etching (DAE)] up to 72 h to allow molecular machinery analysis. Our data show that the Ti-enriched medium provokes significant stimulus of angiogenesis-related machinery in endothelial cells by upexpressing VEGFR1, VEGFR2, VEGF, eNOS, and iNOS genes, while the PI3K/Akt signaling pathway was also significantly enhanced. As PI3K/AKT signaling was related to angiogenesis in response to vascular endothelial growth factor (VEGF), we addressed the importance of PI3K/Akt upon Ti-enriched medium responses by concomitantly treating the cells with wortmannin, a well-known PI3K inhibitor. Wortmannin suppressed the angiogenic factors, because VEGF, VEGFR1, and eNOS genes were downregulated in those cells, highlighting the importance of PI3K/AKT signaling on driving angiogenic phenotype and angiogenesis performance within the peri-implant tissue reaction. In conjunction, these data reinforce that titanium-implantable devices modify the metabolism of surrounding cells, such as endothelial cells, probably coupling osteogenesis and angiogenesis processes in peri-implant tissue and then contributing to successfully osseointegration of biomedical titanium-based devices.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-020-06473-8</identifier><identifier>PMID: 33506378</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Angiogenesis ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Ceramics ; Chemistry and Materials Science ; Composites ; Coupling (molecular) ; Electronic devices ; Endothelial cells ; Enrichment ; Etching ; Genes ; Glass ; Growth factors ; Materials Science ; Metabolism ; Molecular machines ; Natural Materials ; Nitric oxide ; Nitric-oxide synthase ; Osseointegration ; Osteogenesis ; Phenotypes ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Signal transduction ; Signaling ; Surfaces and Interfaces ; Surgical implants ; Thin Films ; Tissues ; Titanium ; Vascular endothelial growth factor ; Vascularization ; Wortmannin</subject><ispartof>Journal of materials science. Materials in medicine, 2021, Vol.32 (1), p.18-18, Article 18</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-ec8084720da46f423ded41be61a79cb9b4546d518e8d830c791e49821bcdcbbb3</citedby><cites>FETCH-LOGICAL-c511t-ec8084720da46f423ded41be61a79cb9b4546d518e8d830c791e49821bcdcbbb3</cites><orcidid>0000-0002-4149-5965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-020-06473-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s10856-020-06473-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27903,27904,41099,41467,42168,42536,51298,51555</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33506378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Bruna Rodrigues</creatorcontrib><creatorcontrib>Pinto, Thais Silva</creatorcontrib><creatorcontrib>da Costa Fernandes, Célio Junior</creatorcontrib><creatorcontrib>Bezerra, Fábio</creatorcontrib><creatorcontrib>Zambuzzi, Willian Fernando</creatorcontrib><title>PI3K/AKT signaling drives titanium-induced angiogenic stimulus</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Although osseointegration and clinical success of titanium (Ti)-implanted materials depend on neovascularization in the reactional peri-implant tissue, very little has been achieved considering the Ti-molecules release on the behavior of endothelial cells. To address this issue, we challenged endothelial cells (HUVECs) with Ti-enriched medium obtained from two types of commercial titanium surfaces [presenting or not dual-acid etching (DAE)] up to 72 h to allow molecular machinery analysis. Our data show that the Ti-enriched medium provokes significant stimulus of angiogenesis-related machinery in endothelial cells by upexpressing VEGFR1, VEGFR2, VEGF, eNOS, and iNOS genes, while the PI3K/Akt signaling pathway was also significantly enhanced. As PI3K/AKT signaling was related to angiogenesis in response to vascular endothelial growth factor (VEGF), we addressed the importance of PI3K/Akt upon Ti-enriched medium responses by concomitantly treating the cells with wortmannin, a well-known PI3K inhibitor. Wortmannin suppressed the angiogenic factors, because VEGF, VEGFR1, and eNOS genes were downregulated in those cells, highlighting the importance of PI3K/AKT signaling on driving angiogenic phenotype and angiogenesis performance within the peri-implant tissue reaction. In conjunction, these data reinforce that titanium-implantable devices modify the metabolism of surrounding cells, such as endothelial cells, probably coupling osteogenesis and angiogenesis processes in peri-implant tissue and then contributing to successfully osseointegration of biomedical titanium-based devices.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Angiogenesis</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Coupling (molecular)</subject><subject>Electronic devices</subject><subject>Endothelial cells</subject><subject>Enrichment</subject><subject>Etching</subject><subject>Genes</subject><subject>Glass</subject><subject>Growth factors</subject><subject>Materials Science</subject><subject>Metabolism</subject><subject>Molecular machines</subject><subject>Natural Materials</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Osseointegration</subject><subject>Osteogenesis</subject><subject>Phenotypes</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Thin Films</subject><subject>Tissues</subject><subject>Titanium</subject><subject>Vascular endothelial growth factor</subject><subject>Vascularization</subject><subject>Wortmannin</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kclOwzAQhi0EgrK8AAcUiQuX0PGWOBckVLFUIMGhnC3HdoNR4oCdVOLtSVsoy4GTLc03v8fzIXSM4RwD5OOIQfAsBQIpZCynqdhCI8yHCxNUbKMRFDxPGaewh_ZjfAEAVnC-i_Yo5ZDRXIzQxeOU3o0v72ZJdJVXtfNVYoJb2Jh0rlPe9U3qvOm1NYnylWsr651OYueavu7jIdqZqzrao8_zAD1dX80mt-n9w810cnmfao5xl1otQLCcgFEsmzNCjTUMlzbDKi90WZSMs8xwLKwwgoLOC2xZIQgutdFlWdIDdLHOfe3LxhptfRdULV-Da1R4l61y8nfFu2dZtQuZCzbshg4BZ58BoX3rbexk46K2da28bfsoCRMkyxiIJXr6B31p-zDsZkVhhglZUWRN6dDGGOx8MwwGudQj13rkoEeu9EgxNJ38_Mam5cvHANA1EIeSr2z4fvuf2A8_z5sB</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Martins, Bruna Rodrigues</creator><creator>Pinto, Thais Silva</creator><creator>da Costa Fernandes, Célio Junior</creator><creator>Bezerra, Fábio</creator><creator>Zambuzzi, Willian Fernando</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4149-5965</orcidid></search><sort><creationdate>2021</creationdate><title>PI3K/AKT signaling drives titanium-induced angiogenic stimulus</title><author>Martins, Bruna Rodrigues ; Pinto, Thais Silva ; da Costa Fernandes, Célio Junior ; Bezerra, Fábio ; Zambuzzi, Willian Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-ec8084720da46f423ded41be61a79cb9b4546d518e8d830c791e49821bcdcbbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Angiogenesis</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Coupling (molecular)</topic><topic>Electronic devices</topic><topic>Endothelial cells</topic><topic>Enrichment</topic><topic>Etching</topic><topic>Genes</topic><topic>Glass</topic><topic>Growth factors</topic><topic>Materials Science</topic><topic>Metabolism</topic><topic>Molecular machines</topic><topic>Natural Materials</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Osseointegration</topic><topic>Osteogenesis</topic><topic>Phenotypes</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Thin Films</topic><topic>Tissues</topic><topic>Titanium</topic><topic>Vascular endothelial growth factor</topic><topic>Vascularization</topic><topic>Wortmannin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Bruna Rodrigues</creatorcontrib><creatorcontrib>Pinto, Thais Silva</creatorcontrib><creatorcontrib>da Costa Fernandes, Célio Junior</creatorcontrib><creatorcontrib>Bezerra, Fábio</creatorcontrib><creatorcontrib>Zambuzzi, Willian Fernando</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Bruna Rodrigues</au><au>Pinto, Thais Silva</au><au>da Costa Fernandes, Célio Junior</au><au>Bezerra, Fábio</au><au>Zambuzzi, Willian Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K/AKT signaling drives titanium-induced angiogenic stimulus</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2021</date><risdate>2021</risdate><volume>32</volume><issue>1</issue><spage>18</spage><epage>18</epage><pages>18-18</pages><artnum>18</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Although osseointegration and clinical success of titanium (Ti)-implanted materials depend on neovascularization in the reactional peri-implant tissue, very little has been achieved considering the Ti-molecules release on the behavior of endothelial cells. To address this issue, we challenged endothelial cells (HUVECs) with Ti-enriched medium obtained from two types of commercial titanium surfaces [presenting or not dual-acid etching (DAE)] up to 72 h to allow molecular machinery analysis. Our data show that the Ti-enriched medium provokes significant stimulus of angiogenesis-related machinery in endothelial cells by upexpressing VEGFR1, VEGFR2, VEGF, eNOS, and iNOS genes, while the PI3K/Akt signaling pathway was also significantly enhanced. As PI3K/AKT signaling was related to angiogenesis in response to vascular endothelial growth factor (VEGF), we addressed the importance of PI3K/Akt upon Ti-enriched medium responses by concomitantly treating the cells with wortmannin, a well-known PI3K inhibitor. Wortmannin suppressed the angiogenic factors, because VEGF, VEGFR1, and eNOS genes were downregulated in those cells, highlighting the importance of PI3K/AKT signaling on driving angiogenic phenotype and angiogenesis performance within the peri-implant tissue reaction. In conjunction, these data reinforce that titanium-implantable devices modify the metabolism of surrounding cells, such as endothelial cells, probably coupling osteogenesis and angiogenesis processes in peri-implant tissue and then contributing to successfully osseointegration of biomedical titanium-based devices.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33506378</pmid><doi>10.1007/s10856-020-06473-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4149-5965</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2021, Vol.32 (1), p.18-18, Article 18 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7840643 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Angiogenesis Biomaterials Biomaterials Synthesis and Characterization Biomedical Engineering and Bioengineering Biomedical materials Ceramics Chemistry and Materials Science Composites Coupling (molecular) Electronic devices Endothelial cells Enrichment Etching Genes Glass Growth factors Materials Science Metabolism Molecular machines Natural Materials Nitric oxide Nitric-oxide synthase Osseointegration Osteogenesis Phenotypes Polymer Sciences Regenerative Medicine/Tissue Engineering Signal transduction Signaling Surfaces and Interfaces Surgical implants Thin Films Tissues Titanium Vascular endothelial growth factor Vascularization Wortmannin |
title | PI3K/AKT signaling drives titanium-induced angiogenic stimulus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K/AKT%20signaling%20drives%20titanium-induced%20angiogenic%20stimulus&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Martins,%20Bruna%20Rodrigues&rft.date=2021&rft.volume=32&rft.issue=1&rft.spage=18&rft.epage=18&rft.pages=18-18&rft.artnum=18&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-020-06473-8&rft_dat=%3Cproquest_pubme%3E2482664083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481412283&rft_id=info:pmid/33506378&rfr_iscdi=true |