The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease

In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2021-02, Vol.120 (3), p.504-516
Hauptverfasser: Terse, Vishram L., Gosavi, Shachi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 3
container_start_page 504
container_title Biophysical journal
container_volume 120
creator Terse, Vishram L.
Gosavi, Shachi
description In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.
doi_str_mv 10.1016/j.bpj.2020.11.2277
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7837137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349520332240</els_id><sourcerecordid>2473413673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-f4a52c6468f3eb029ef3f64252382cbded8c8469443f6caf6f2268eb14d0d0073</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJaTbb_oEego-5eKsvy14IhbBJk0CWlO72LGR5lNViS65kb-i_r81-kF5yGmbeZ94RehH6SvCMYCK-bWdlu51RTIeezCjN8w9oQjJOU4wLcYYmGGORMj7PztFFjFuMCc0w-YTOGWPZvGB8gux6A8nS16D7WoVkCXqjnI1N4k1y6xtlXbJ6VW1r3cs46gZ6ka4hNNap-kgchNXNr1W68ME7tbOhj8lyFH8G34GK8Bl9NKqO8OVQp-j3j7v14iF9er5_XNw8pZpnWZcarjKqBReFYVBiOgfDjOA0o6yguqygKnTBxZzzYayVEYZSUUBJeIUrjHM2Rd_3vm1fNlBpcF1QtWyDbVT4K72y8n_F2Y188TuZFywnbDS4OhgE_6eH2MnGRg11rRz4PkrKc8YJEzkbULpHdfAxBjCnMwTLMSO5lUNGcsxIEiLHjIaly7cPPK0cQxmA6z0AwzftLAQZtQWnobIBdCcrb9_z_wcLKaL7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473413673</pqid></control><display><type>article</type><title>The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Terse, Vishram L. ; Gosavi, Shachi</creator><creatorcontrib>Terse, Vishram L. ; Gosavi, Shachi</creatorcontrib><description>In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.11.2277</identifier><identifier>PMID: 33359834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Models, Molecular ; Peptide Hydrolases - chemistry ; Peptide Hydrolases - metabolism ; Protein Domains ; Protein Folding ; SARS-CoV-2 - enzymology</subject><ispartof>Biophysical journal, 2021-02, Vol.120 (3), p.504-516</ispartof><rights>2021 Biophysical Society</rights><rights>Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 Biophysical Society. 2021 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-f4a52c6468f3eb029ef3f64252382cbded8c8469443f6caf6f2268eb14d0d0073</citedby><cites>FETCH-LOGICAL-c455t-f4a52c6468f3eb029ef3f64252382cbded8c8469443f6caf6f2268eb14d0d0073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7837137/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349520332240$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33359834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terse, Vishram L.</creatorcontrib><creatorcontrib>Gosavi, Shachi</creatorcontrib><title>The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.</description><subject>Models, Molecular</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protein Domains</subject><subject>Protein Folding</subject><subject>SARS-CoV-2 - enzymology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVJaTbb_oEego-5eKsvy14IhbBJk0CWlO72LGR5lNViS65kb-i_r81-kF5yGmbeZ94RehH6SvCMYCK-bWdlu51RTIeezCjN8w9oQjJOU4wLcYYmGGORMj7PztFFjFuMCc0w-YTOGWPZvGB8gux6A8nS16D7WoVkCXqjnI1N4k1y6xtlXbJ6VW1r3cs46gZ6ka4hNNap-kgchNXNr1W68ME7tbOhj8lyFH8G34GK8Bl9NKqO8OVQp-j3j7v14iF9er5_XNw8pZpnWZcarjKqBReFYVBiOgfDjOA0o6yguqygKnTBxZzzYayVEYZSUUBJeIUrjHM2Rd_3vm1fNlBpcF1QtWyDbVT4K72y8n_F2Y188TuZFywnbDS4OhgE_6eH2MnGRg11rRz4PkrKc8YJEzkbULpHdfAxBjCnMwTLMSO5lUNGcsxIEiLHjIaly7cPPK0cQxmA6z0AwzftLAQZtQWnobIBdCcrb9_z_wcLKaL7</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Terse, Vishram L.</creator><creator>Gosavi, Shachi</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210202</creationdate><title>The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease</title><author>Terse, Vishram L. ; Gosavi, Shachi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-f4a52c6468f3eb029ef3f64252382cbded8c8469443f6caf6f2268eb14d0d0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Models, Molecular</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protein Domains</topic><topic>Protein Folding</topic><topic>SARS-CoV-2 - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terse, Vishram L.</creatorcontrib><creatorcontrib>Gosavi, Shachi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terse, Vishram L.</au><au>Gosavi, Shachi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>120</volume><issue>3</issue><spage>504</spage><epage>516</epage><pages>504-516</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33359834</pmid><doi>10.1016/j.bpj.2020.11.2277</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2021-02, Vol.120 (3), p.504-516
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7837137
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Models, Molecular
Peptide Hydrolases - chemistry
Peptide Hydrolases - metabolism
Protein Domains
Protein Folding
SARS-CoV-2 - enzymology
title The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Molecular%20Mechanism%20of%20Domain%20Swapping%20of%20the%20C-Terminal%20Domain%20of%20the%20SARS-Coronavirus%20Main%20Protease&rft.jtitle=Biophysical%20journal&rft.au=Terse,%20Vishram%20L.&rft.date=2021-02-02&rft.volume=120&rft.issue=3&rft.spage=504&rft.epage=516&rft.pages=504-516&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.11.2277&rft_dat=%3Cproquest_pubme%3E2473413673%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473413673&rft_id=info:pmid/33359834&rft_els_id=S0006349520332240&rfr_iscdi=true