Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2021-01, Vol.11 (1), p.70, Article 70
Hauptverfasser: Jawad, Jasir, Hawari, Alaa H., Zaidi, Syed Javaid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 70
container_title Membranes (Basel)
container_volume 11
creator Jawad, Jasir
Hawari, Alaa H.
Zaidi, Syed Javaid
description The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box-Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.
doi_str_mv 10.3390/membranes11010070
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7835737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_14e5cfe161c242248bf7d3be1630d583</doaj_id><sourcerecordid>2480419682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-dc604b5abd66d74188dcdb1ee14df0fb8a10c8457c8781b79924db8ff9bb5f283</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEolXpA7BBltggoQE7dmJng1SNGKjUC6LtOvLlZMYlsVvbaZnH4g1xZoaqhQ3Z2Dr-_PnY-YviNcEfKG3wxwEGFaSDSAgmGHP8rNgvMeczTHn1_NF8rziM8Rrnr8ZVTfHLYo9SxgUWbL_4deoN9NYtkXQGXYCLNtk7m9boyMl-HW1EvkNpBWjhw70MBp3HwU_lb8FriBEln6dgrE7odNcSWvTjT3QVN1p05u-gR3M_KOtkst5NxjMYg-zzkO59-LE5_DvEG-8ioIsxdFJD1qWVN773yzW6BL1y9naE-Kp40ck-wuFuPCiuFp8v519nJ-dfjudHJzPNGppmRteYqUoqU9eGMyKE0UYRAMJMhzslJMFasIprwQVRvGlKZpToukapqisFPSiOt17j5XV7E-wgw7r10rabgg_LVoZkdQ8tYVDpDkhNdMnKkgnVcUNVLlBsKkGz69PWdTOqAYwGl_Ltn0ifrji7apf-ruWCVpzyLHi3EwQ_PUJqBxs19H1-bT_GNp-JGWlqUWb07V_otR9D_plbitCGcZwpsqV08DEG6B6aIbid8tX-k6-8583jWzzs-JOmDLzfAvegfBe1BafhAZsCSDDLHUxZJJkW_0_PbdpkZ-5Hl-hv6azySA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480139470</pqid></control><display><type>article</type><title>Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Jawad, Jasir ; Hawari, Alaa H. ; Zaidi, Syed Javaid</creator><creatorcontrib>Jawad, Jasir ; Hawari, Alaa H. ; Zaidi, Syed Javaid</creatorcontrib><description>The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box-Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11010070</identifier><identifier>PMID: 33478084</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Artificial intelligence ; artificial neural network ; Artificial neural networks ; Biochemistry &amp; Molecular Biology ; Chemistry ; Chemistry, Physical ; Desalination ; Design of experiments ; Design optimization ; Energy consumption ; Engineering ; Engineering, Chemical ; Experimental design ; Fluctuations ; Flux ; forward osmosis ; Life Sciences &amp; Biomedicine ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical models ; Membrane processes ; Membranes ; Modelling ; Neural networks ; New technology ; Optimization ; Osmosis ; Osmotic pressure ; Physical Sciences ; Polymer Science ; Response surface methodology ; Science &amp; Technology ; Sensitivity analysis ; Technology ; Variance analysis ; Velocity ; water treatment</subject><ispartof>Membranes (Basel), 2021-01, Vol.11 (1), p.70, Article 70</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>33</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000610401300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-dc604b5abd66d74188dcdb1ee14df0fb8a10c8457c8781b79924db8ff9bb5f283</citedby><cites>FETCH-LOGICAL-c493t-dc604b5abd66d74188dcdb1ee14df0fb8a10c8457c8781b79924db8ff9bb5f283</cites><orcidid>0000-0001-9815-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835737/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835737/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33478084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jawad, Jasir</creatorcontrib><creatorcontrib>Hawari, Alaa H.</creatorcontrib><creatorcontrib>Zaidi, Syed Javaid</creatorcontrib><title>Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques</title><title>Membranes (Basel)</title><addtitle>MEMBRANES-BASEL</addtitle><addtitle>Membranes (Basel)</addtitle><description>The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box-Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.</description><subject>Artificial intelligence</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Desalination</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Experimental design</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>forward osmosis</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical models</subject><subject>Membrane processes</subject><subject>Membranes</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>New technology</subject><subject>Optimization</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Response surface methodology</subject><subject>Science &amp; Technology</subject><subject>Sensitivity analysis</subject><subject>Technology</subject><subject>Variance analysis</subject><subject>Velocity</subject><subject>water treatment</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstu1DAUhiMEolXpA7BBltggoQE7dmJng1SNGKjUC6LtOvLlZMYlsVvbaZnH4g1xZoaqhQ3Z2Dr-_PnY-YviNcEfKG3wxwEGFaSDSAgmGHP8rNgvMeczTHn1_NF8rziM8Rrnr8ZVTfHLYo9SxgUWbL_4deoN9NYtkXQGXYCLNtk7m9boyMl-HW1EvkNpBWjhw70MBp3HwU_lb8FriBEln6dgrE7odNcSWvTjT3QVN1p05u-gR3M_KOtkst5NxjMYg-zzkO59-LE5_DvEG-8ioIsxdFJD1qWVN773yzW6BL1y9naE-Kp40ck-wuFuPCiuFp8v519nJ-dfjudHJzPNGppmRteYqUoqU9eGMyKE0UYRAMJMhzslJMFasIprwQVRvGlKZpToukapqisFPSiOt17j5XV7E-wgw7r10rabgg_LVoZkdQ8tYVDpDkhNdMnKkgnVcUNVLlBsKkGz69PWdTOqAYwGl_Ltn0ifrji7apf-ruWCVpzyLHi3EwQ_PUJqBxs19H1-bT_GNp-JGWlqUWb07V_otR9D_plbitCGcZwpsqV08DEG6B6aIbid8tX-k6-8583jWzzs-JOmDLzfAvegfBe1BafhAZsCSDDLHUxZJJkW_0_PbdpkZ-5Hl-hv6azySA</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Jawad, Jasir</creator><creator>Hawari, Alaa H.</creator><creator>Zaidi, Syed Javaid</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9815-7679</orcidid></search><sort><creationdate>20210119</creationdate><title>Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques</title><author>Jawad, Jasir ; Hawari, Alaa H. ; Zaidi, Syed Javaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-dc604b5abd66d74188dcdb1ee14df0fb8a10c8457c8781b79924db8ff9bb5f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Desalination</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Experimental design</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>forward osmosis</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical models</topic><topic>Membrane processes</topic><topic>Membranes</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>New technology</topic><topic>Optimization</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Response surface methodology</topic><topic>Science &amp; Technology</topic><topic>Sensitivity analysis</topic><topic>Technology</topic><topic>Variance analysis</topic><topic>Velocity</topic><topic>water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jawad, Jasir</creatorcontrib><creatorcontrib>Hawari, Alaa H.</creatorcontrib><creatorcontrib>Zaidi, Syed Javaid</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jawad, Jasir</au><au>Hawari, Alaa H.</au><au>Zaidi, Syed Javaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques</atitle><jtitle>Membranes (Basel)</jtitle><stitle>MEMBRANES-BASEL</stitle><addtitle>Membranes (Basel)</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>70</spage><pages>70-</pages><artnum>70</artnum><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box-Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33478084</pmid><doi>10.3390/membranes11010070</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9815-7679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2021-01, Vol.11 (1), p.70, Article 70
issn 2077-0375
2077-0375
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7835737
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Artificial intelligence
artificial neural network
Artificial neural networks
Biochemistry & Molecular Biology
Chemistry
Chemistry, Physical
Desalination
Design of experiments
Design optimization
Energy consumption
Engineering
Engineering, Chemical
Experimental design
Fluctuations
Flux
forward osmosis
Life Sciences & Biomedicine
Materials Science
Materials Science, Multidisciplinary
Mathematical models
Membrane processes
Membranes
Modelling
Neural networks
New technology
Optimization
Osmosis
Osmotic pressure
Physical Sciences
Polymer Science
Response surface methodology
Science & Technology
Sensitivity analysis
Technology
Variance analysis
Velocity
water treatment
title Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Sensitivity%20Analysis%20of%20the%20Forward%20Osmosis%20Process%20to%20Predict%20Membrane%20Flux%20Using%20a%20Novel%20Combination%20of%20Neural%20Network%20and%20Response%20Surface%20Methodology%20Techniques&rft.jtitle=Membranes%20(Basel)&rft.au=Jawad,%20Jasir&rft.date=2021-01-19&rft.volume=11&rft.issue=1&rft.spage=70&rft.pages=70-&rft.artnum=70&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11010070&rft_dat=%3Cproquest_pubme%3E2480419682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480139470&rft_id=info:pmid/33478084&rft_doaj_id=oai_doaj_org_article_14e5cfe161c242248bf7d3be1630d583&rfr_iscdi=true