Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model's abilities to exploit the global and semantic discrim...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (2), p.452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 452 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Yang, Wenjie Zhang, Jianlin Cai, Jingju Xu, Zhiyong |
description | Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model's abilities to exploit the global and semantic discriminative information due to the limits of receptive fields. Furthermore, the fixed graph size would cause many redundancies in the representation of actions, which is inefficient for the model. The redundancies could also hinder the model from focusing on beneficial features. To address those issues, we proposed a plug-and-play channel adaptive merging module (CAMM) specific for the human skeleton graph, which can merge the vertices from the same part of the skeleton graph adaptively and efficiently. The merge weights are different across the channels, so every channel has its flexibility to integrate the joints. Then, we build a novel shallow graph convolutional network (SGCN) based on the module, which achieves state-of-the-art performance with less computational cost. Experimental results on NTU-RGB+D and Kinetics-Skeleton illustrates the superiority of our methods. |
doi_str_mv | 10.3390/s21020452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7827280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6d0ca8ff06ef445cb8267981d6f5fc1a</doaj_id><sourcerecordid>2478200111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-a108f207c3adb04b91db838818e2b17200c5f862114a23267eab604bcbb5bfac3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2qqFDaA38ArdQLPSyMP3bXuVSiUaGREEjQnq2x1042OOvU3gXx7-sQGkFPHnkePZqZl5AjCqecT-AsMQoMRMXekQMqmCglY_D-Vb1PPqa0BGCcc_mB7HMuBDSyOiCzuwV6Hx6Ly4jrRTEN_UPw49CFHn1xbYfHEO8LF2Jxd2-9HUJffsdk2-LcbJji1pow77tN_YnsOfTJfn55D8nvix-_pj_Lq5vL2fT8qjSingwlUpCOQWM4thqEntBWSy4llZZp2jAAUzlZM0oFMs7qxqKuM2e0rrRDww_JbOttAy7VOnYrjE8qYKeeP0KcK4xDZ7xVdQsGpXNQWydEZbTMvomkbe0qZyhm17etaz3qlW2N7YeI_o30bafvFmoeHlQjWcMkZMHJiyCGP6NNg1p1yVjvsbdhTIqJJlNC0CajX_5Dl2GM-cxbKi9OKc3U1y1lYkgpWrcbhoLahK12YWf2-PX0O_JfuvwvsqKkAw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478200111</pqid></control><display><type>article</type><title>Shallow Graph Convolutional Network for Skeleton-Based Action Recognition</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Wenjie ; Zhang, Jianlin ; Cai, Jingju ; Xu, Zhiyong</creator><creatorcontrib>Yang, Wenjie ; Zhang, Jianlin ; Cai, Jingju ; Xu, Zhiyong</creatorcontrib><description>Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model's abilities to exploit the global and semantic discriminative information due to the limits of receptive fields. Furthermore, the fixed graph size would cause many redundancies in the representation of actions, which is inefficient for the model. The redundancies could also hinder the model from focusing on beneficial features. To address those issues, we proposed a plug-and-play channel adaptive merging module (CAMM) specific for the human skeleton graph, which can merge the vertices from the same part of the skeleton graph adaptively and efficiently. The merge weights are different across the channels, so every channel has its flexibility to integrate the joints. Then, we build a novel shallow graph convolutional network (SGCN) based on the module, which achieves state-of-the-art performance with less computational cost. Experimental results on NTU-RGB+D and Kinetics-Skeleton illustrates the superiority of our methods.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21020452</identifier><identifier>PMID: 33440785</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>activity recognition ; Apexes ; Bones ; Datasets ; graph convolution network ; Graph theory ; Humans ; Methods ; Neural networks ; Neural Networks, Computer ; Pattern Recognition, Automated ; Recognition ; Semantics ; Skeleton ; skeleton sequence</subject><ispartof>Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.452</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-a108f207c3adb04b91db838818e2b17200c5f862114a23267eab604bcbb5bfac3</citedby><cites>FETCH-LOGICAL-c469t-a108f207c3adb04b91db838818e2b17200c5f862114a23267eab604bcbb5bfac3</cites><orcidid>0000-0001-8658-610X ; 0000-0002-5284-2942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827280/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827280/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33440785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Wenjie</creatorcontrib><creatorcontrib>Zhang, Jianlin</creatorcontrib><creatorcontrib>Cai, Jingju</creatorcontrib><creatorcontrib>Xu, Zhiyong</creatorcontrib><title>Shallow Graph Convolutional Network for Skeleton-Based Action Recognition</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model's abilities to exploit the global and semantic discriminative information due to the limits of receptive fields. Furthermore, the fixed graph size would cause many redundancies in the representation of actions, which is inefficient for the model. The redundancies could also hinder the model from focusing on beneficial features. To address those issues, we proposed a plug-and-play channel adaptive merging module (CAMM) specific for the human skeleton graph, which can merge the vertices from the same part of the skeleton graph adaptively and efficiently. The merge weights are different across the channels, so every channel has its flexibility to integrate the joints. Then, we build a novel shallow graph convolutional network (SGCN) based on the module, which achieves state-of-the-art performance with less computational cost. Experimental results on NTU-RGB+D and Kinetics-Skeleton illustrates the superiority of our methods.</description><subject>activity recognition</subject><subject>Apexes</subject><subject>Bones</subject><subject>Datasets</subject><subject>graph convolution network</subject><subject>Graph theory</subject><subject>Humans</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pattern Recognition, Automated</subject><subject>Recognition</subject><subject>Semantics</subject><subject>Skeleton</subject><subject>skeleton sequence</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1PGzEQhq2qqFDaA38ArdQLPSyMP3bXuVSiUaGREEjQnq2x1042OOvU3gXx7-sQGkFPHnkePZqZl5AjCqecT-AsMQoMRMXekQMqmCglY_D-Vb1PPqa0BGCcc_mB7HMuBDSyOiCzuwV6Hx6Ly4jrRTEN_UPw49CFHn1xbYfHEO8LF2Jxd2-9HUJffsdk2-LcbJji1pow77tN_YnsOfTJfn55D8nvix-_pj_Lq5vL2fT8qjSingwlUpCOQWM4thqEntBWSy4llZZp2jAAUzlZM0oFMs7qxqKuM2e0rrRDww_JbOttAy7VOnYrjE8qYKeeP0KcK4xDZ7xVdQsGpXNQWydEZbTMvomkbe0qZyhm17etaz3qlW2N7YeI_o30bafvFmoeHlQjWcMkZMHJiyCGP6NNg1p1yVjvsbdhTIqJJlNC0CajX_5Dl2GM-cxbKi9OKc3U1y1lYkgpWrcbhoLahK12YWf2-PX0O_JfuvwvsqKkAw</recordid><startdate>20210111</startdate><enddate>20210111</enddate><creator>Yang, Wenjie</creator><creator>Zhang, Jianlin</creator><creator>Cai, Jingju</creator><creator>Xu, Zhiyong</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8658-610X</orcidid><orcidid>https://orcid.org/0000-0002-5284-2942</orcidid></search><sort><creationdate>20210111</creationdate><title>Shallow Graph Convolutional Network for Skeleton-Based Action Recognition</title><author>Yang, Wenjie ; Zhang, Jianlin ; Cai, Jingju ; Xu, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-a108f207c3adb04b91db838818e2b17200c5f862114a23267eab604bcbb5bfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>activity recognition</topic><topic>Apexes</topic><topic>Bones</topic><topic>Datasets</topic><topic>graph convolution network</topic><topic>Graph theory</topic><topic>Humans</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pattern Recognition, Automated</topic><topic>Recognition</topic><topic>Semantics</topic><topic>Skeleton</topic><topic>skeleton sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wenjie</creatorcontrib><creatorcontrib>Zhang, Jianlin</creatorcontrib><creatorcontrib>Cai, Jingju</creatorcontrib><creatorcontrib>Xu, Zhiyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wenjie</au><au>Zhang, Jianlin</au><au>Cai, Jingju</au><au>Xu, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shallow Graph Convolutional Network for Skeleton-Based Action Recognition</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-01-11</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>452</spage><pages>452-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model's abilities to exploit the global and semantic discriminative information due to the limits of receptive fields. Furthermore, the fixed graph size would cause many redundancies in the representation of actions, which is inefficient for the model. The redundancies could also hinder the model from focusing on beneficial features. To address those issues, we proposed a plug-and-play channel adaptive merging module (CAMM) specific for the human skeleton graph, which can merge the vertices from the same part of the skeleton graph adaptively and efficiently. The merge weights are different across the channels, so every channel has its flexibility to integrate the joints. Then, we build a novel shallow graph convolutional network (SGCN) based on the module, which achieves state-of-the-art performance with less computational cost. Experimental results on NTU-RGB+D and Kinetics-Skeleton illustrates the superiority of our methods.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33440785</pmid><doi>10.3390/s21020452</doi><orcidid>https://orcid.org/0000-0001-8658-610X</orcidid><orcidid>https://orcid.org/0000-0002-5284-2942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-01, Vol.21 (2), p.452 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7827280 |
source | MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | activity recognition Apexes Bones Datasets graph convolution network Graph theory Humans Methods Neural networks Neural Networks, Computer Pattern Recognition, Automated Recognition Semantics Skeleton skeleton sequence |
title | Shallow Graph Convolutional Network for Skeleton-Based Action Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shallow%20Graph%20Convolutional%20Network%20for%20Skeleton-Based%20Action%20Recognition&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yang,%20Wenjie&rft.date=2021-01-11&rft.volume=21&rft.issue=2&rft.spage=452&rft.pages=452-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21020452&rft_dat=%3Cproquest_doaj_%3E2478200111%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478200111&rft_id=info:pmid/33440785&rft_doaj_id=oai_doaj_org_article_6d0ca8ff06ef445cb8267981d6f5fc1a&rfr_iscdi=true |