Optimisation of Mechanical Properties of Gradient Zr-C Coatings
One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical lo...
Gespeichert in:
Veröffentlicht in: | Materials 2021-01, Vol.14 (2), p.296 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 296 |
container_title | Materials |
container_volume | 14 |
creator | Szparaga, Łukasz Bartosik, Przemysław Gilewicz, Adam Mydłowska, Katarzyna Ratajski, Jerzy |
description | One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test. |
doi_str_mv | 10.3390/ma14020296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477260693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</originalsourceid><addsrcrecordid>eNpdkU9LwzAYh4MoTuYufgApeBGhmn9Nm4siRacwmQe9eAlpmm4ZbTOTVvDbm7k5p7kk8D758bz8ADhB8JIQDq8aiSjEEHO2B44Q5yxGnNL9nfcAjLxfwHAIQRnmh2BACCUQJvQI3EyXnWmMl52xbWSr6EmruWyNknX07OxSu85ovxqMnSyNbrvozcV5lNvwo535Y3BQydrr0eYegtf7u5f8IZ5Mx4_57SRWFLIuLmhCGOMYcy1xkiSkgDpjTMngkbKqqrjGrEqgpChLkzJlBeI6oUxVmWa4pGQIrte5y75odKmCiJO1WDrTSPcprDTi76Q1czGzHyLNMOMUhYDzTYCz7732nQhbK13XstW29wLTNMUMMk4CevYPXdjetWG9b4pwgsjK6GJNKWe9d7rayiAoVtWI32oCfLqrv0V_iiBf1BSHbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477393134</pqid></control><display><type>article</type><title>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Szparaga, Łukasz ; Bartosik, Przemysław ; Gilewicz, Adam ; Mydłowska, Katarzyna ; Ratajski, Jerzy</creator><creatorcontrib>Szparaga, Łukasz ; Bartosik, Przemysław ; Gilewicz, Adam ; Mydłowska, Katarzyna ; Ratajski, Jerzy</creatorcontrib><description>One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14020296</identifier><identifier>PMID: 33430054</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesion ; Adhesives ; Carbon ; Cracks ; Fracture toughness ; Functionally gradient materials ; Interfaces ; Load ; Magnetic properties ; Magnetron sputtering ; Mechanical properties ; Optimization ; Physical vapor deposition ; Protective coatings ; Residual stress ; Scratch tests ; Shear stress ; Simulation ; Spatial distribution ; Substrates ; Transition layers ; Tribology ; Wear resistance ; Zirconium</subject><ispartof>Materials, 2021-01, Vol.14 (2), p.296</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</citedby><cites>FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</cites><orcidid>0000-0002-0288-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826941/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826941/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33430054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szparaga, Łukasz</creatorcontrib><creatorcontrib>Bartosik, Przemysław</creatorcontrib><creatorcontrib>Gilewicz, Adam</creatorcontrib><creatorcontrib>Mydłowska, Katarzyna</creatorcontrib><creatorcontrib>Ratajski, Jerzy</creatorcontrib><title>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.</description><subject>Adhesion</subject><subject>Adhesives</subject><subject>Carbon</subject><subject>Cracks</subject><subject>Fracture toughness</subject><subject>Functionally gradient materials</subject><subject>Interfaces</subject><subject>Load</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Physical vapor deposition</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Scratch tests</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Spatial distribution</subject><subject>Substrates</subject><subject>Transition layers</subject><subject>Tribology</subject><subject>Wear resistance</subject><subject>Zirconium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU9LwzAYh4MoTuYufgApeBGhmn9Nm4siRacwmQe9eAlpmm4ZbTOTVvDbm7k5p7kk8D758bz8ADhB8JIQDq8aiSjEEHO2B44Q5yxGnNL9nfcAjLxfwHAIQRnmh2BACCUQJvQI3EyXnWmMl52xbWSr6EmruWyNknX07OxSu85ovxqMnSyNbrvozcV5lNvwo535Y3BQydrr0eYegtf7u5f8IZ5Mx4_57SRWFLIuLmhCGOMYcy1xkiSkgDpjTMngkbKqqrjGrEqgpChLkzJlBeI6oUxVmWa4pGQIrte5y75odKmCiJO1WDrTSPcprDTi76Q1czGzHyLNMOMUhYDzTYCz7732nQhbK13XstW29wLTNMUMMk4CevYPXdjetWG9b4pwgsjK6GJNKWe9d7rayiAoVtWI32oCfLqrv0V_iiBf1BSHbg</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Szparaga, Łukasz</creator><creator>Bartosik, Przemysław</creator><creator>Gilewicz, Adam</creator><creator>Mydłowska, Katarzyna</creator><creator>Ratajski, Jerzy</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0288-0510</orcidid></search><sort><creationdate>20210108</creationdate><title>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</title><author>Szparaga, Łukasz ; Bartosik, Przemysław ; Gilewicz, Adam ; Mydłowska, Katarzyna ; Ratajski, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Adhesives</topic><topic>Carbon</topic><topic>Cracks</topic><topic>Fracture toughness</topic><topic>Functionally gradient materials</topic><topic>Interfaces</topic><topic>Load</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Physical vapor deposition</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Scratch tests</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Spatial distribution</topic><topic>Substrates</topic><topic>Transition layers</topic><topic>Tribology</topic><topic>Wear resistance</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szparaga, Łukasz</creatorcontrib><creatorcontrib>Bartosik, Przemysław</creatorcontrib><creatorcontrib>Gilewicz, Adam</creatorcontrib><creatorcontrib>Mydłowska, Katarzyna</creatorcontrib><creatorcontrib>Ratajski, Jerzy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szparaga, Łukasz</au><au>Bartosik, Przemysław</au><au>Gilewicz, Adam</au><au>Mydłowska, Katarzyna</au><au>Ratajski, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>296</spage><pages>296-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33430054</pmid><doi>10.3390/ma14020296</doi><orcidid>https://orcid.org/0000-0002-0288-0510</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-01, Vol.14 (2), p.296 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826941 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adhesion Adhesives Carbon Cracks Fracture toughness Functionally gradient materials Interfaces Load Magnetic properties Magnetron sputtering Mechanical properties Optimization Physical vapor deposition Protective coatings Residual stress Scratch tests Shear stress Simulation Spatial distribution Substrates Transition layers Tribology Wear resistance Zirconium |
title | Optimisation of Mechanical Properties of Gradient Zr-C Coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20Mechanical%20Properties%20of%20Gradient%20Zr-C%20Coatings&rft.jtitle=Materials&rft.au=Szparaga,%20%C5%81ukasz&rft.date=2021-01-08&rft.volume=14&rft.issue=2&rft.spage=296&rft.pages=296-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14020296&rft_dat=%3Cproquest_pubme%3E2477260693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477393134&rft_id=info:pmid/33430054&rfr_iscdi=true |