Optimisation of Mechanical Properties of Gradient Zr-C Coatings

One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-01, Vol.14 (2), p.296
Hauptverfasser: Szparaga, Łukasz, Bartosik, Przemysław, Gilewicz, Adam, Mydłowska, Katarzyna, Ratajski, Jerzy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 296
container_title Materials
container_volume 14
creator Szparaga, Łukasz
Bartosik, Przemysław
Gilewicz, Adam
Mydłowska, Katarzyna
Ratajski, Jerzy
description One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.
doi_str_mv 10.3390/ma14020296
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477260693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</originalsourceid><addsrcrecordid>eNpdkU9LwzAYh4MoTuYufgApeBGhmn9Nm4siRacwmQe9eAlpmm4ZbTOTVvDbm7k5p7kk8D758bz8ADhB8JIQDq8aiSjEEHO2B44Q5yxGnNL9nfcAjLxfwHAIQRnmh2BACCUQJvQI3EyXnWmMl52xbWSr6EmruWyNknX07OxSu85ovxqMnSyNbrvozcV5lNvwo535Y3BQydrr0eYegtf7u5f8IZ5Mx4_57SRWFLIuLmhCGOMYcy1xkiSkgDpjTMngkbKqqrjGrEqgpChLkzJlBeI6oUxVmWa4pGQIrte5y75odKmCiJO1WDrTSPcprDTi76Q1czGzHyLNMOMUhYDzTYCz7732nQhbK13XstW29wLTNMUMMk4CevYPXdjetWG9b4pwgsjK6GJNKWe9d7rayiAoVtWI32oCfLqrv0V_iiBf1BSHbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477393134</pqid></control><display><type>article</type><title>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Szparaga, Łukasz ; Bartosik, Przemysław ; Gilewicz, Adam ; Mydłowska, Katarzyna ; Ratajski, Jerzy</creator><creatorcontrib>Szparaga, Łukasz ; Bartosik, Przemysław ; Gilewicz, Adam ; Mydłowska, Katarzyna ; Ratajski, Jerzy</creatorcontrib><description>One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14020296</identifier><identifier>PMID: 33430054</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesion ; Adhesives ; Carbon ; Cracks ; Fracture toughness ; Functionally gradient materials ; Interfaces ; Load ; Magnetic properties ; Magnetron sputtering ; Mechanical properties ; Optimization ; Physical vapor deposition ; Protective coatings ; Residual stress ; Scratch tests ; Shear stress ; Simulation ; Spatial distribution ; Substrates ; Transition layers ; Tribology ; Wear resistance ; Zirconium</subject><ispartof>Materials, 2021-01, Vol.14 (2), p.296</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</citedby><cites>FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</cites><orcidid>0000-0002-0288-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826941/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826941/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33430054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szparaga, Łukasz</creatorcontrib><creatorcontrib>Bartosik, Przemysław</creatorcontrib><creatorcontrib>Gilewicz, Adam</creatorcontrib><creatorcontrib>Mydłowska, Katarzyna</creatorcontrib><creatorcontrib>Ratajski, Jerzy</creatorcontrib><title>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.</description><subject>Adhesion</subject><subject>Adhesives</subject><subject>Carbon</subject><subject>Cracks</subject><subject>Fracture toughness</subject><subject>Functionally gradient materials</subject><subject>Interfaces</subject><subject>Load</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Physical vapor deposition</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Scratch tests</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Spatial distribution</subject><subject>Substrates</subject><subject>Transition layers</subject><subject>Tribology</subject><subject>Wear resistance</subject><subject>Zirconium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU9LwzAYh4MoTuYufgApeBGhmn9Nm4siRacwmQe9eAlpmm4ZbTOTVvDbm7k5p7kk8D758bz8ADhB8JIQDq8aiSjEEHO2B44Q5yxGnNL9nfcAjLxfwHAIQRnmh2BACCUQJvQI3EyXnWmMl52xbWSr6EmruWyNknX07OxSu85ovxqMnSyNbrvozcV5lNvwo535Y3BQydrr0eYegtf7u5f8IZ5Mx4_57SRWFLIuLmhCGOMYcy1xkiSkgDpjTMngkbKqqrjGrEqgpChLkzJlBeI6oUxVmWa4pGQIrte5y75odKmCiJO1WDrTSPcprDTi76Q1czGzHyLNMOMUhYDzTYCz7732nQhbK13XstW29wLTNMUMMk4CevYPXdjetWG9b4pwgsjK6GJNKWe9d7rayiAoVtWI32oCfLqrv0V_iiBf1BSHbg</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Szparaga, Łukasz</creator><creator>Bartosik, Przemysław</creator><creator>Gilewicz, Adam</creator><creator>Mydłowska, Katarzyna</creator><creator>Ratajski, Jerzy</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0288-0510</orcidid></search><sort><creationdate>20210108</creationdate><title>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</title><author>Szparaga, Łukasz ; Bartosik, Przemysław ; Gilewicz, Adam ; Mydłowska, Katarzyna ; Ratajski, Jerzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b453669229ea25553b0e866ca43076fff9e26f50a41875d76b19e546cf8e62d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Adhesives</topic><topic>Carbon</topic><topic>Cracks</topic><topic>Fracture toughness</topic><topic>Functionally gradient materials</topic><topic>Interfaces</topic><topic>Load</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Physical vapor deposition</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Scratch tests</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Spatial distribution</topic><topic>Substrates</topic><topic>Transition layers</topic><topic>Tribology</topic><topic>Wear resistance</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szparaga, Łukasz</creatorcontrib><creatorcontrib>Bartosik, Przemysław</creatorcontrib><creatorcontrib>Gilewicz, Adam</creatorcontrib><creatorcontrib>Mydłowska, Katarzyna</creatorcontrib><creatorcontrib>Ratajski, Jerzy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szparaga, Łukasz</au><au>Bartosik, Przemysław</au><au>Gilewicz, Adam</au><au>Mydłowska, Katarzyna</au><au>Ratajski, Jerzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation of Mechanical Properties of Gradient Zr-C Coatings</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>296</spage><pages>296-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>One of the key components of the designing procedure of a structure of hard anti-wear coatings deposited via Physical Vapour Deposition (PVD) is the analysis of the stress and strain distributions in the substrate/coating systems, initiated during the deposition process and by external mechanical loads. Knowledge of residual stress development is crucial due to their significant influence on the mechanical and tribological properties of such layer systems. The main goal of the work is to find the optimal functionally graded material (FGM) coating's structure, composed of three functional layers: (1) adhesive layer, providing high adhesion of the coating to the substrate, (2) gradient load support and crack deflection layer, improving hardness and enhancing fracture toughness, (3) wear-resistant top layer, reducing wear. In the optimisation procedure of the coating's structure, seven decision criteria basing on the state of residual stresses and strains in the substrate/coating system were proposed. Using finite element simulations and postulated criteria, the thickness and composition gradients of the transition layer in FGM coating were determined. In order to verify the proposed optimisation procedure, Zr-C coatings with different spatial distribution of carbon concentration were produced by the Reactive Magnetron Sputtering PVD (RMS PVD) method and their anti-wear properties were assessed by scratch test and ball-on-disc tribological test.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33430054</pmid><doi>10.3390/ma14020296</doi><orcidid>https://orcid.org/0000-0002-0288-0510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-01, Vol.14 (2), p.296
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826941
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adhesion
Adhesives
Carbon
Cracks
Fracture toughness
Functionally gradient materials
Interfaces
Load
Magnetic properties
Magnetron sputtering
Mechanical properties
Optimization
Physical vapor deposition
Protective coatings
Residual stress
Scratch tests
Shear stress
Simulation
Spatial distribution
Substrates
Transition layers
Tribology
Wear resistance
Zirconium
title Optimisation of Mechanical Properties of Gradient Zr-C Coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20of%20Mechanical%20Properties%20of%20Gradient%20Zr-C%20Coatings&rft.jtitle=Materials&rft.au=Szparaga,%20%C5%81ukasz&rft.date=2021-01-08&rft.volume=14&rft.issue=2&rft.spage=296&rft.pages=296-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14020296&rft_dat=%3Cproquest_pubme%3E2477260693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477393134&rft_id=info:pmid/33430054&rfr_iscdi=true