Photosynthesis-assisted remodeling of three-dimensional printed structures
The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cel...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-01, Vol.118 (3), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Yu, Kunhao Feng, Zhangzhengrong Du, Haixu Xin, An Lee, Kyung Hoon Li, Ketian Su, Yipin Wang, Qiming Fang, Nicholas X. Daraio, Chiara |
description | The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics. |
doi_str_mv | 10.1073/pnas.2016524118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27012199</jstor_id><sourcerecordid>27012199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</originalsourceid><addsrcrecordid>eNpVkU2P1DAMhiMEYoeBMyfQHLl0107SJL0goRWfWgkOcI7S1t3pqk2GOEXaf09HswxwsQ9-bL_2K8RLhEsEq64OMfClBDS11IjukdggNFgZ3cBjsQGQtnJa6gvxjPkOAJrawVNxoZRWaBxsxJdv-1QS38eyJx65CrzGQv0u05x6msZ4u0vDruwzUdWPM0UeUwzT7pDHeOS45KUrSyZ-Lp4MYWJ68ZC34seH99-vP1U3Xz9-vn53U3Ua61IZVM625FTbWtXgqkkag7pRAF3f6MF10oLSzoWhtn0LLqDsghvIQb8SRm3F29Pcw9LO1HcUSw6TXwXNId_7FEb_fyWOe3-bfnnrpDlevhVvHgbk9HMhLn4euaNpCpHSwl5qa6VBg_WKXp3QLifmTMN5DYI_OuCPDvi_Dqwdr_9Vd-b_vHwFXp2AOy4pn-vr0SixadRvOq-Nsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477261615</pqid></control><display><type>article</type><title>Photosynthesis-assisted remodeling of three-dimensional printed structures</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Kunhao ; Feng, Zhangzhengrong ; Du, Haixu ; Xin, An ; Lee, Kyung Hoon ; Li, Ketian ; Su, Yipin ; Wang, Qiming ; Fang, Nicholas X. ; Daraio, Chiara</creator><creatorcontrib>Yu, Kunhao ; Feng, Zhangzhengrong ; Du, Haixu ; Xin, An ; Lee, Kyung Hoon ; Li, Ketian ; Su, Yipin ; Wang, Qiming ; Fang, Nicholas X. ; Daraio, Chiara</creatorcontrib><description>The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2016524118</identifier><identifier>PMID: 33431680</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (3), p.1-9</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</citedby><cites>FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</cites><orcidid>0000-0001-5296-4440 ; 0000-0003-2306-1175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27012199$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27012199$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33431680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kunhao</creatorcontrib><creatorcontrib>Feng, Zhangzhengrong</creatorcontrib><creatorcontrib>Du, Haixu</creatorcontrib><creatorcontrib>Xin, An</creatorcontrib><creatorcontrib>Lee, Kyung Hoon</creatorcontrib><creatorcontrib>Li, Ketian</creatorcontrib><creatorcontrib>Su, Yipin</creatorcontrib><creatorcontrib>Wang, Qiming</creatorcontrib><creatorcontrib>Fang, Nicholas X.</creatorcontrib><creatorcontrib>Daraio, Chiara</creatorcontrib><title>Photosynthesis-assisted remodeling of three-dimensional printed structures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.</description><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU2P1DAMhiMEYoeBMyfQHLl0107SJL0goRWfWgkOcI7S1t3pqk2GOEXaf09HswxwsQ9-bL_2K8RLhEsEq64OMfClBDS11IjukdggNFgZ3cBjsQGQtnJa6gvxjPkOAJrawVNxoZRWaBxsxJdv-1QS38eyJx65CrzGQv0u05x6msZ4u0vDruwzUdWPM0UeUwzT7pDHeOS45KUrSyZ-Lp4MYWJ68ZC34seH99-vP1U3Xz9-vn53U3Ua61IZVM625FTbWtXgqkkag7pRAF3f6MF10oLSzoWhtn0LLqDsghvIQb8SRm3F29Pcw9LO1HcUSw6TXwXNId_7FEb_fyWOe3-bfnnrpDlevhVvHgbk9HMhLn4euaNpCpHSwl5qa6VBg_WKXp3QLifmTMN5DYI_OuCPDvi_Dqwdr_9Vd-b_vHwFXp2AOy4pn-vr0SixadRvOq-Nsg</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Yu, Kunhao</creator><creator>Feng, Zhangzhengrong</creator><creator>Du, Haixu</creator><creator>Xin, An</creator><creator>Lee, Kyung Hoon</creator><creator>Li, Ketian</creator><creator>Su, Yipin</creator><creator>Wang, Qiming</creator><creator>Fang, Nicholas X.</creator><creator>Daraio, Chiara</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5296-4440</orcidid><orcidid>https://orcid.org/0000-0003-2306-1175</orcidid></search><sort><creationdate>20210119</creationdate><title>Photosynthesis-assisted remodeling of three-dimensional printed structures</title><author>Yu, Kunhao ; Feng, Zhangzhengrong ; Du, Haixu ; Xin, An ; Lee, Kyung Hoon ; Li, Ketian ; Su, Yipin ; Wang, Qiming ; Fang, Nicholas X. ; Daraio, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kunhao</creatorcontrib><creatorcontrib>Feng, Zhangzhengrong</creatorcontrib><creatorcontrib>Du, Haixu</creatorcontrib><creatorcontrib>Xin, An</creatorcontrib><creatorcontrib>Lee, Kyung Hoon</creatorcontrib><creatorcontrib>Li, Ketian</creatorcontrib><creatorcontrib>Su, Yipin</creatorcontrib><creatorcontrib>Wang, Qiming</creatorcontrib><creatorcontrib>Fang, Nicholas X.</creatorcontrib><creatorcontrib>Daraio, Chiara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kunhao</au><au>Feng, Zhangzhengrong</au><au>Du, Haixu</au><au>Xin, An</au><au>Lee, Kyung Hoon</au><au>Li, Ketian</au><au>Su, Yipin</au><au>Wang, Qiming</au><au>Fang, Nicholas X.</au><au>Daraio, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthesis-assisted remodeling of three-dimensional printed structures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>118</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33431680</pmid><doi>10.1073/pnas.2016524118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5296-4440</orcidid><orcidid>https://orcid.org/0000-0003-2306-1175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (3), p.1-9 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826334 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Physical Sciences |
title | Photosynthesis-assisted remodeling of three-dimensional printed structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthesis-assisted%20remodeling%20of%20three-dimensional%20printed%20structures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yu,%20Kunhao&rft.date=2021-01-19&rft.volume=118&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2016524118&rft_dat=%3Cjstor_pubme%3E27012199%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477261615&rft_id=info:pmid/33431680&rft_jstor_id=27012199&rfr_iscdi=true |