Photosynthesis-assisted remodeling of three-dimensional printed structures

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-01, Vol.118 (3), p.1-9
Hauptverfasser: Yu, Kunhao, Feng, Zhangzhengrong, Du, Haixu, Xin, An, Lee, Kyung Hoon, Li, Ketian, Su, Yipin, Wang, Qiming, Fang, Nicholas X., Daraio, Chiara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Yu, Kunhao
Feng, Zhangzhengrong
Du, Haixu
Xin, An
Lee, Kyung Hoon
Li, Ketian
Su, Yipin
Wang, Qiming
Fang, Nicholas X.
Daraio, Chiara
description The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.
doi_str_mv 10.1073/pnas.2016524118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27012199</jstor_id><sourcerecordid>27012199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</originalsourceid><addsrcrecordid>eNpVkU2P1DAMhiMEYoeBMyfQHLl0107SJL0goRWfWgkOcI7S1t3pqk2GOEXaf09HswxwsQ9-bL_2K8RLhEsEq64OMfClBDS11IjukdggNFgZ3cBjsQGQtnJa6gvxjPkOAJrawVNxoZRWaBxsxJdv-1QS38eyJx65CrzGQv0u05x6msZ4u0vDruwzUdWPM0UeUwzT7pDHeOS45KUrSyZ-Lp4MYWJ68ZC34seH99-vP1U3Xz9-vn53U3Ua61IZVM625FTbWtXgqkkag7pRAF3f6MF10oLSzoWhtn0LLqDsghvIQb8SRm3F29Pcw9LO1HcUSw6TXwXNId_7FEb_fyWOe3-bfnnrpDlevhVvHgbk9HMhLn4euaNpCpHSwl5qa6VBg_WKXp3QLifmTMN5DYI_OuCPDvi_Dqwdr_9Vd-b_vHwFXp2AOy4pn-vr0SixadRvOq-Nsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477261615</pqid></control><display><type>article</type><title>Photosynthesis-assisted remodeling of three-dimensional printed structures</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Kunhao ; Feng, Zhangzhengrong ; Du, Haixu ; Xin, An ; Lee, Kyung Hoon ; Li, Ketian ; Su, Yipin ; Wang, Qiming ; Fang, Nicholas X. ; Daraio, Chiara</creator><creatorcontrib>Yu, Kunhao ; Feng, Zhangzhengrong ; Du, Haixu ; Xin, An ; Lee, Kyung Hoon ; Li, Ketian ; Su, Yipin ; Wang, Qiming ; Fang, Nicholas X. ; Daraio, Chiara</creatorcontrib><description>The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2016524118</identifier><identifier>PMID: 33431680</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (3), p.1-9</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</citedby><cites>FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</cites><orcidid>0000-0001-5296-4440 ; 0000-0003-2306-1175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27012199$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27012199$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33431680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kunhao</creatorcontrib><creatorcontrib>Feng, Zhangzhengrong</creatorcontrib><creatorcontrib>Du, Haixu</creatorcontrib><creatorcontrib>Xin, An</creatorcontrib><creatorcontrib>Lee, Kyung Hoon</creatorcontrib><creatorcontrib>Li, Ketian</creatorcontrib><creatorcontrib>Su, Yipin</creatorcontrib><creatorcontrib>Wang, Qiming</creatorcontrib><creatorcontrib>Fang, Nicholas X.</creatorcontrib><creatorcontrib>Daraio, Chiara</creatorcontrib><title>Photosynthesis-assisted remodeling of three-dimensional printed structures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.</description><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkU2P1DAMhiMEYoeBMyfQHLl0107SJL0goRWfWgkOcI7S1t3pqk2GOEXaf09HswxwsQ9-bL_2K8RLhEsEq64OMfClBDS11IjukdggNFgZ3cBjsQGQtnJa6gvxjPkOAJrawVNxoZRWaBxsxJdv-1QS38eyJx65CrzGQv0u05x6msZ4u0vDruwzUdWPM0UeUwzT7pDHeOS45KUrSyZ-Lp4MYWJ68ZC34seH99-vP1U3Xz9-vn53U3Ua61IZVM625FTbWtXgqkkag7pRAF3f6MF10oLSzoWhtn0LLqDsghvIQb8SRm3F29Pcw9LO1HcUSw6TXwXNId_7FEb_fyWOe3-bfnnrpDlevhVvHgbk9HMhLn4euaNpCpHSwl5qa6VBg_WKXp3QLifmTMN5DYI_OuCPDvi_Dqwdr_9Vd-b_vHwFXp2AOy4pn-vr0SixadRvOq-Nsg</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Yu, Kunhao</creator><creator>Feng, Zhangzhengrong</creator><creator>Du, Haixu</creator><creator>Xin, An</creator><creator>Lee, Kyung Hoon</creator><creator>Li, Ketian</creator><creator>Su, Yipin</creator><creator>Wang, Qiming</creator><creator>Fang, Nicholas X.</creator><creator>Daraio, Chiara</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5296-4440</orcidid><orcidid>https://orcid.org/0000-0003-2306-1175</orcidid></search><sort><creationdate>20210119</creationdate><title>Photosynthesis-assisted remodeling of three-dimensional printed structures</title><author>Yu, Kunhao ; Feng, Zhangzhengrong ; Du, Haixu ; Xin, An ; Lee, Kyung Hoon ; Li, Ketian ; Su, Yipin ; Wang, Qiming ; Fang, Nicholas X. ; Daraio, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-61387be83bb7391009266149300cd94f8c2703488af57db08a12ca8fe80d0cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kunhao</creatorcontrib><creatorcontrib>Feng, Zhangzhengrong</creatorcontrib><creatorcontrib>Du, Haixu</creatorcontrib><creatorcontrib>Xin, An</creatorcontrib><creatorcontrib>Lee, Kyung Hoon</creatorcontrib><creatorcontrib>Li, Ketian</creatorcontrib><creatorcontrib>Su, Yipin</creatorcontrib><creatorcontrib>Wang, Qiming</creatorcontrib><creatorcontrib>Fang, Nicholas X.</creatorcontrib><creatorcontrib>Daraio, Chiara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kunhao</au><au>Feng, Zhangzhengrong</au><au>Du, Haixu</au><au>Xin, An</au><au>Lee, Kyung Hoon</au><au>Li, Ketian</au><au>Su, Yipin</au><au>Wang, Qiming</au><au>Fang, Nicholas X.</au><au>Daraio, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthesis-assisted remodeling of three-dimensional printed structures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>118</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healingwhen exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33431680</pmid><doi>10.1073/pnas.2016524118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5296-4440</orcidid><orcidid>https://orcid.org/0000-0003-2306-1175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (3), p.1-9
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826334
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Physical Sciences
title Photosynthesis-assisted remodeling of three-dimensional printed structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthesis-assisted%20remodeling%20of%20three-dimensional%20printed%20structures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yu,%20Kunhao&rft.date=2021-01-19&rft.volume=118&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2016524118&rft_dat=%3Cjstor_pubme%3E27012199%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477261615&rft_id=info:pmid/33431680&rft_jstor_id=27012199&rfr_iscdi=true