Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants

An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-01, Vol.22 (2), p.512
Hauptverfasser: Fal, Kateryna, Tomkova, Denisa, Vachon, Gilles, Chabouté, Marie-Edith, Berr, Alexandre, Carles, Cristel C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 512
container_title International journal of molecular sciences
container_volume 22
creator Fal, Kateryna
Tomkova, Denisa
Vachon, Gilles
Chabouté, Marie-Edith
Berr, Alexandre
Carles, Cristel C
description An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.
doi_str_mv 10.3390/ijms22020512
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7825600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476733716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4b74e135a540187e9b9c8267376124afce6faae9e6ee6fe52381772c00f23fa23</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpyFdz67ks9NJA3Eqjr90eCsGkTcBtcnCgNyGvZ70yu5Ir7Sbkv68Sp8HNSY_Rb95o9Ah5z-hnziv6xa37BECBSgZvyCETABNKlX67ow_IUUprSoGDrPbJAeeCVbnpkPyetjH0dnC--Gm924xd1sEX1i-Li6XL9dXXYtrarkO_wnRW_ML7Yo5160MXVg7TEzlv0cXiNmGRfW4664f0juw1tkt48nwek9vvF_Pp5WR2_eNqej6b1EKoYSIWWiDj0kpBWamxWlR1CUpzrRgI29SoGmuxQoVZoQReMq2hprQB3ljgx-Tb1nczLnpc1uiHaDuzia638cEE68z_N961ZhXujC5BKkqzwenWoH3Vdnk-M481yhljSuo7ltlPz8Ni-DNiGkzvUo1d3hjDmAwIraSCUpYZ_fgKXYcx-vwVT5TmXDOVqbMtVceQUsTm5QWMmsd4zW68Gf-wu-wL_C9P_hdUkJ9X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476733716</pqid></control><display><type>article</type><title>Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fal, Kateryna ; Tomkova, Denisa ; Vachon, Gilles ; Chabouté, Marie-Edith ; Berr, Alexandre ; Carles, Cristel C</creator><creatorcontrib>Fal, Kateryna ; Tomkova, Denisa ; Vachon, Gilles ; Chabouté, Marie-Edith ; Berr, Alexandre ; Carles, Cristel C</creatorcontrib><description>An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22020512</identifier><identifier>PMID: 33419220</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Animals ; Antibodies ; Biochemistry, Molecular Biology ; Biotechnology - methods ; Cell fate ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; Effectors ; Enzymes ; Epigenesis, Genetic ; Epigenetics ; Epigenomics - methods ; Fusion protein ; Gene Editing - methods ; Gene expression ; Gene Expression Regulation ; Genetic engineering ; Genomes ; Histones ; Humans ; Insects ; Life Sciences ; Medical research ; Modular design ; Modularity ; Molecular biology ; Nanobodies ; New technology ; Nucleotide sequence ; Plants - genetics ; Proteins ; Review ; Transcription</subject><ispartof>International journal of molecular sciences, 2021-01, Vol.22 (2), p.512</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4b74e135a540187e9b9c8267376124afce6faae9e6ee6fe52381772c00f23fa23</citedby><cites>FETCH-LOGICAL-c446t-4b74e135a540187e9b9c8267376124afce6faae9e6ee6fe52381772c00f23fa23</cites><orcidid>0000-0002-1381-9053 ; 0000-0002-9416-4860 ; 0000-0001-5187-0290 ; 0000-0002-8401-9117 ; 0000-0001-8688-721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33419220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03111657$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fal, Kateryna</creatorcontrib><creatorcontrib>Tomkova, Denisa</creatorcontrib><creatorcontrib>Vachon, Gilles</creatorcontrib><creatorcontrib>Chabouté, Marie-Edith</creatorcontrib><creatorcontrib>Berr, Alexandre</creatorcontrib><creatorcontrib>Carles, Cristel C</creatorcontrib><title>Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biotechnology - methods</subject><subject>Cell fate</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>Effectors</subject><subject>Enzymes</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Epigenomics - methods</subject><subject>Fusion protein</subject><subject>Gene Editing - methods</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Histones</subject><subject>Humans</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Modular design</subject><subject>Modularity</subject><subject>Molecular biology</subject><subject>Nanobodies</subject><subject>New technology</subject><subject>Nucleotide sequence</subject><subject>Plants - genetics</subject><subject>Proteins</subject><subject>Review</subject><subject>Transcription</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1rGzEQxUVpyFdz67ks9NJA3Eqjr90eCsGkTcBtcnCgNyGvZ70yu5Ir7Sbkv68Sp8HNSY_Rb95o9Ah5z-hnziv6xa37BECBSgZvyCETABNKlX67ow_IUUprSoGDrPbJAeeCVbnpkPyetjH0dnC--Gm924xd1sEX1i-Li6XL9dXXYtrarkO_wnRW_ML7Yo5160MXVg7TEzlv0cXiNmGRfW4664f0juw1tkt48nwek9vvF_Pp5WR2_eNqej6b1EKoYSIWWiDj0kpBWamxWlR1CUpzrRgI29SoGmuxQoVZoQReMq2hprQB3ljgx-Tb1nczLnpc1uiHaDuzia638cEE68z_N961ZhXujC5BKkqzwenWoH3Vdnk-M481yhljSuo7ltlPz8Ni-DNiGkzvUo1d3hjDmAwIraSCUpYZ_fgKXYcx-vwVT5TmXDOVqbMtVceQUsTm5QWMmsd4zW68Gf-wu-wL_C9P_hdUkJ9X</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>Fal, Kateryna</creator><creator>Tomkova, Denisa</creator><creator>Vachon, Gilles</creator><creator>Chabouté, Marie-Edith</creator><creator>Berr, Alexandre</creator><creator>Carles, Cristel C</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1381-9053</orcidid><orcidid>https://orcid.org/0000-0002-9416-4860</orcidid><orcidid>https://orcid.org/0000-0001-5187-0290</orcidid><orcidid>https://orcid.org/0000-0002-8401-9117</orcidid><orcidid>https://orcid.org/0000-0001-8688-721X</orcidid></search><sort><creationdate>20210106</creationdate><title>Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants</title><author>Fal, Kateryna ; Tomkova, Denisa ; Vachon, Gilles ; Chabouté, Marie-Edith ; Berr, Alexandre ; Carles, Cristel C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4b74e135a540187e9b9c8267376124afce6faae9e6ee6fe52381772c00f23fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biotechnology - methods</topic><topic>Cell fate</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>Effectors</topic><topic>Enzymes</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Epigenomics - methods</topic><topic>Fusion protein</topic><topic>Gene Editing - methods</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Histones</topic><topic>Humans</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Modular design</topic><topic>Modularity</topic><topic>Molecular biology</topic><topic>Nanobodies</topic><topic>New technology</topic><topic>Nucleotide sequence</topic><topic>Plants - genetics</topic><topic>Proteins</topic><topic>Review</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fal, Kateryna</creatorcontrib><creatorcontrib>Tomkova, Denisa</creatorcontrib><creatorcontrib>Vachon, Gilles</creatorcontrib><creatorcontrib>Chabouté, Marie-Edith</creatorcontrib><creatorcontrib>Berr, Alexandre</creatorcontrib><creatorcontrib>Carles, Cristel C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fal, Kateryna</au><au>Tomkova, Denisa</au><au>Vachon, Gilles</au><au>Chabouté, Marie-Edith</au><au>Berr, Alexandre</au><au>Carles, Cristel C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-01-06</date><risdate>2021</risdate><volume>22</volume><issue>2</issue><spage>512</spage><pages>512-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33419220</pmid><doi>10.3390/ijms22020512</doi><orcidid>https://orcid.org/0000-0002-1381-9053</orcidid><orcidid>https://orcid.org/0000-0002-9416-4860</orcidid><orcidid>https://orcid.org/0000-0001-5187-0290</orcidid><orcidid>https://orcid.org/0000-0002-8401-9117</orcidid><orcidid>https://orcid.org/0000-0001-8688-721X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-01, Vol.22 (2), p.512
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7825600
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino acids
Animals
Antibodies
Biochemistry, Molecular Biology
Biotechnology - methods
Cell fate
Chromatin
Chromatin - genetics
Chromatin - metabolism
Deoxyribonucleic acid
DNA
DNA Methylation
Effectors
Enzymes
Epigenesis, Genetic
Epigenetics
Epigenomics - methods
Fusion protein
Gene Editing - methods
Gene expression
Gene Expression Regulation
Genetic engineering
Genomes
Histones
Humans
Insects
Life Sciences
Medical research
Modular design
Modularity
Molecular biology
Nanobodies
New technology
Nucleotide sequence
Plants - genetics
Proteins
Review
Transcription
title Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20Manipulation%20and%20Editing:%20Challenges,%20New%20Technologies%20and%20Their%20Use%20in%20Plants&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Fal,%20Kateryna&rft.date=2021-01-06&rft.volume=22&rft.issue=2&rft.spage=512&rft.pages=512-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22020512&rft_dat=%3Cproquest_pubme%3E2476733716%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476733716&rft_id=info:pmid/33419220&rfr_iscdi=true