Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity
The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2020-07, Vol.4 (7), p.672-685 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 7 |
container_start_page | 672 |
container_title | Nature biomedical engineering |
container_volume | 4 |
creator | Degenhart, Alan D. Bishop, William E. Oby, Emily R. Tyler-Kabara, Elizabeth C. Chase, Steven M. Batista, Aaron P. Yu, Byron M. |
description | The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.
Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities. |
doi_str_mv | 10.1038/s41551-020-0542-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7822646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423336376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMotrS9ADcy4MbNaH4nk40gxapQcFEFdyGTZE5TZpJjkjmlrnoP3qFX4jecWqvgIn_zPt-bL_Mi9IzgVwSz_nXhRAjSYopbLDht1SN0SImQbc-7r48f7A_QSSlXGGOiGFdSPEUHjDLCCMaHaLqoZghT-G5qSLFJY2OaIZsQf97-sGneLtXnJkSYR2N9swumqZe-MVPYxNnHulZM6bp1AU4FLMzUlC2gZVWiXzJ8MLaGXag3x-jJaKbiT-7WI_Tl7N3n0w_t-af3H0_fnrdWsK62I3cDUYoTwyWRSqrBMumUwx2xjmI-ksH1wvbEw8DYktEJI4VyveeDGDA7Qm_2vttlmL2z0Ce0obc5zCbf6GSC_luJ4VJv0k7LntKOd2Dw8s4gp2-LL1XPoVg_TSb6tBRNmWKYScYpoC_-Qa_SkuE3AAUyYx2TqyHZUzanUrIf75shWK9x6n2cGuLUa5xaQc3zh6-4r_gdHgB0DxSQ4sbnP1f_3_UXW32tkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423336376</pqid></control><display><type>article</type><title>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Degenhart, Alan D. ; Bishop, William E. ; Oby, Emily R. ; Tyler-Kabara, Elizabeth C. ; Chase, Steven M. ; Batista, Aaron P. ; Yu, Byron M.</creator><creatorcontrib>Degenhart, Alan D. ; Bishop, William E. ; Oby, Emily R. ; Tyler-Kabara, Elizabeth C. ; Chase, Steven M. ; Batista, Aaron P. ; Yu, Byron M.</creatorcontrib><description>The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.
Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-020-0542-9</identifier><identifier>PMID: 32313100</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2632/1663 ; 631/378/2632/2634 ; Alignment ; Animals ; Behavior, Animal ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Brain ; Brain-Computer Interfaces ; Control stability ; Electrodes ; Electroencephalography ; Electrophysiology ; Interface stability ; Interfaces ; Macaca mulatta ; Male ; Motor Cortex - physiology ; Movement - physiology ; Neurons ; Neurons - physiology ; Primates ; Recording ; User-Computer Interface</subject><ispartof>Nature biomedical engineering, 2020-07, Vol.4 (7), p.672-685</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</citedby><cites>FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</cites><orcidid>0000-0003-4450-6313 ; 0000-0003-2252-6938 ; 0000-0002-8369-8517 ; 0000-0003-2257-5115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-020-0542-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-020-0542-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Degenhart, Alan D.</creatorcontrib><creatorcontrib>Bishop, William E.</creatorcontrib><creatorcontrib>Oby, Emily R.</creatorcontrib><creatorcontrib>Tyler-Kabara, Elizabeth C.</creatorcontrib><creatorcontrib>Chase, Steven M.</creatorcontrib><creatorcontrib>Batista, Aaron P.</creatorcontrib><creatorcontrib>Yu, Byron M.</creatorcontrib><title>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.
Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.</description><subject>631/378/2632/1663</subject><subject>631/378/2632/2634</subject><subject>Alignment</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain-Computer Interfaces</subject><subject>Control stability</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electrophysiology</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Motor Cortex - physiology</subject><subject>Movement - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Primates</subject><subject>Recording</subject><subject>User-Computer Interface</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1qFTEYhoMotrS9ADcy4MbNaH4nk40gxapQcFEFdyGTZE5TZpJjkjmlrnoP3qFX4jecWqvgIn_zPt-bL_Mi9IzgVwSz_nXhRAjSYopbLDht1SN0SImQbc-7r48f7A_QSSlXGGOiGFdSPEUHjDLCCMaHaLqoZghT-G5qSLFJY2OaIZsQf97-sGneLtXnJkSYR2N9swumqZe-MVPYxNnHulZM6bp1AU4FLMzUlC2gZVWiXzJ8MLaGXag3x-jJaKbiT-7WI_Tl7N3n0w_t-af3H0_fnrdWsK62I3cDUYoTwyWRSqrBMumUwx2xjmI-ksH1wvbEw8DYktEJI4VyveeDGDA7Qm_2vttlmL2z0Ce0obc5zCbf6GSC_luJ4VJv0k7LntKOd2Dw8s4gp2-LL1XPoVg_TSb6tBRNmWKYScYpoC_-Qa_SkuE3AAUyYx2TqyHZUzanUrIf75shWK9x6n2cGuLUa5xaQc3zh6-4r_gdHgB0DxSQ4sbnP1f_3_UXW32tkA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Degenhart, Alan D.</creator><creator>Bishop, William E.</creator><creator>Oby, Emily R.</creator><creator>Tyler-Kabara, Elizabeth C.</creator><creator>Chase, Steven M.</creator><creator>Batista, Aaron P.</creator><creator>Yu, Byron M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4450-6313</orcidid><orcidid>https://orcid.org/0000-0003-2252-6938</orcidid><orcidid>https://orcid.org/0000-0002-8369-8517</orcidid><orcidid>https://orcid.org/0000-0003-2257-5115</orcidid></search><sort><creationdate>20200701</creationdate><title>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</title><author>Degenhart, Alan D. ; Bishop, William E. ; Oby, Emily R. ; Tyler-Kabara, Elizabeth C. ; Chase, Steven M. ; Batista, Aaron P. ; Yu, Byron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/2632/1663</topic><topic>631/378/2632/2634</topic><topic>Alignment</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain-Computer Interfaces</topic><topic>Control stability</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electrophysiology</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Motor Cortex - physiology</topic><topic>Movement - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Primates</topic><topic>Recording</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Degenhart, Alan D.</creatorcontrib><creatorcontrib>Bishop, William E.</creatorcontrib><creatorcontrib>Oby, Emily R.</creatorcontrib><creatorcontrib>Tyler-Kabara, Elizabeth C.</creatorcontrib><creatorcontrib>Chase, Steven M.</creatorcontrib><creatorcontrib>Batista, Aaron P.</creatorcontrib><creatorcontrib>Yu, Byron M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Degenhart, Alan D.</au><au>Bishop, William E.</au><au>Oby, Emily R.</au><au>Tyler-Kabara, Elizabeth C.</au><au>Chase, Steven M.</au><au>Batista, Aaron P.</au><au>Yu, Byron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>4</volume><issue>7</issue><spage>672</spage><epage>685</epage><pages>672-685</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.
Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32313100</pmid><doi>10.1038/s41551-020-0542-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4450-6313</orcidid><orcidid>https://orcid.org/0000-0003-2252-6938</orcidid><orcidid>https://orcid.org/0000-0002-8369-8517</orcidid><orcidid>https://orcid.org/0000-0003-2257-5115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2020-07, Vol.4 (7), p.672-685 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7822646 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 631/378/2632/1663 631/378/2632/2634 Alignment Animals Behavior, Animal Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Brain Brain-Computer Interfaces Control stability Electrodes Electroencephalography Electrophysiology Interface stability Interfaces Macaca mulatta Male Motor Cortex - physiology Movement - physiology Neurons Neurons - physiology Primates Recording User-Computer Interface |
title | Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20a%20brain%E2%80%93computer%20interface%20via%20the%20alignment%20of%20low-dimensional%20spaces%20of%20neural%20activity&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Degenhart,%20Alan%20D.&rft.date=2020-07-01&rft.volume=4&rft.issue=7&rft.spage=672&rft.epage=685&rft.pages=672-685&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-020-0542-9&rft_dat=%3Cproquest_pubme%3E2423336376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423336376&rft_id=info:pmid/32313100&rfr_iscdi=true |