Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity

The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2020-07, Vol.4 (7), p.672-685
Hauptverfasser: Degenhart, Alan D., Bishop, William E., Oby, Emily R., Tyler-Kabara, Elizabeth C., Chase, Steven M., Batista, Aaron P., Yu, Byron M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 7
container_start_page 672
container_title Nature biomedical engineering
container_volume 4
creator Degenhart, Alan D.
Bishop, William E.
Oby, Emily R.
Tyler-Kabara, Elizabeth C.
Chase, Steven M.
Batista, Aaron P.
Yu, Byron M.
description The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs. Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.
doi_str_mv 10.1038/s41551-020-0542-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7822646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423336376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMotrS9ADcy4MbNaH4nk40gxapQcFEFdyGTZE5TZpJjkjmlrnoP3qFX4jecWqvgIn_zPt-bL_Mi9IzgVwSz_nXhRAjSYopbLDht1SN0SImQbc-7r48f7A_QSSlXGGOiGFdSPEUHjDLCCMaHaLqoZghT-G5qSLFJY2OaIZsQf97-sGneLtXnJkSYR2N9swumqZe-MVPYxNnHulZM6bp1AU4FLMzUlC2gZVWiXzJ8MLaGXag3x-jJaKbiT-7WI_Tl7N3n0w_t-af3H0_fnrdWsK62I3cDUYoTwyWRSqrBMumUwx2xjmI-ksH1wvbEw8DYktEJI4VyveeDGDA7Qm_2vttlmL2z0Ce0obc5zCbf6GSC_luJ4VJv0k7LntKOd2Dw8s4gp2-LL1XPoVg_TSb6tBRNmWKYScYpoC_-Qa_SkuE3AAUyYx2TqyHZUzanUrIf75shWK9x6n2cGuLUa5xaQc3zh6-4r_gdHgB0DxSQ4sbnP1f_3_UXW32tkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423336376</pqid></control><display><type>article</type><title>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Degenhart, Alan D. ; Bishop, William E. ; Oby, Emily R. ; Tyler-Kabara, Elizabeth C. ; Chase, Steven M. ; Batista, Aaron P. ; Yu, Byron M.</creator><creatorcontrib>Degenhart, Alan D. ; Bishop, William E. ; Oby, Emily R. ; Tyler-Kabara, Elizabeth C. ; Chase, Steven M. ; Batista, Aaron P. ; Yu, Byron M.</creatorcontrib><description>The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs. Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-020-0542-9</identifier><identifier>PMID: 32313100</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2632/1663 ; 631/378/2632/2634 ; Alignment ; Animals ; Behavior, Animal ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Brain ; Brain-Computer Interfaces ; Control stability ; Electrodes ; Electroencephalography ; Electrophysiology ; Interface stability ; Interfaces ; Macaca mulatta ; Male ; Motor Cortex - physiology ; Movement - physiology ; Neurons ; Neurons - physiology ; Primates ; Recording ; User-Computer Interface</subject><ispartof>Nature biomedical engineering, 2020-07, Vol.4 (7), p.672-685</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</citedby><cites>FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</cites><orcidid>0000-0003-4450-6313 ; 0000-0003-2252-6938 ; 0000-0002-8369-8517 ; 0000-0003-2257-5115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-020-0542-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-020-0542-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Degenhart, Alan D.</creatorcontrib><creatorcontrib>Bishop, William E.</creatorcontrib><creatorcontrib>Oby, Emily R.</creatorcontrib><creatorcontrib>Tyler-Kabara, Elizabeth C.</creatorcontrib><creatorcontrib>Chase, Steven M.</creatorcontrib><creatorcontrib>Batista, Aaron P.</creatorcontrib><creatorcontrib>Yu, Byron M.</creatorcontrib><title>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs. Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.</description><subject>631/378/2632/1663</subject><subject>631/378/2632/2634</subject><subject>Alignment</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain-Computer Interfaces</subject><subject>Control stability</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electrophysiology</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Motor Cortex - physiology</subject><subject>Movement - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Primates</subject><subject>Recording</subject><subject>User-Computer Interface</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1qFTEYhoMotrS9ADcy4MbNaH4nk40gxapQcFEFdyGTZE5TZpJjkjmlrnoP3qFX4jecWqvgIn_zPt-bL_Mi9IzgVwSz_nXhRAjSYopbLDht1SN0SImQbc-7r48f7A_QSSlXGGOiGFdSPEUHjDLCCMaHaLqoZghT-G5qSLFJY2OaIZsQf97-sGneLtXnJkSYR2N9swumqZe-MVPYxNnHulZM6bp1AU4FLMzUlC2gZVWiXzJ8MLaGXag3x-jJaKbiT-7WI_Tl7N3n0w_t-af3H0_fnrdWsK62I3cDUYoTwyWRSqrBMumUwx2xjmI-ksH1wvbEw8DYktEJI4VyveeDGDA7Qm_2vttlmL2z0Ce0obc5zCbf6GSC_luJ4VJv0k7LntKOd2Dw8s4gp2-LL1XPoVg_TSb6tBRNmWKYScYpoC_-Qa_SkuE3AAUyYx2TqyHZUzanUrIf75shWK9x6n2cGuLUa5xaQc3zh6-4r_gdHgB0DxSQ4sbnP1f_3_UXW32tkA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Degenhart, Alan D.</creator><creator>Bishop, William E.</creator><creator>Oby, Emily R.</creator><creator>Tyler-Kabara, Elizabeth C.</creator><creator>Chase, Steven M.</creator><creator>Batista, Aaron P.</creator><creator>Yu, Byron M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4450-6313</orcidid><orcidid>https://orcid.org/0000-0003-2252-6938</orcidid><orcidid>https://orcid.org/0000-0002-8369-8517</orcidid><orcidid>https://orcid.org/0000-0003-2257-5115</orcidid></search><sort><creationdate>20200701</creationdate><title>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</title><author>Degenhart, Alan D. ; Bishop, William E. ; Oby, Emily R. ; Tyler-Kabara, Elizabeth C. ; Chase, Steven M. ; Batista, Aaron P. ; Yu, Byron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-f4db19941a4717979bc37d9d061cd204f1bd85c81ec8100c1fd5a759d8e4b5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/2632/1663</topic><topic>631/378/2632/2634</topic><topic>Alignment</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain-Computer Interfaces</topic><topic>Control stability</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electrophysiology</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Motor Cortex - physiology</topic><topic>Movement - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Primates</topic><topic>Recording</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Degenhart, Alan D.</creatorcontrib><creatorcontrib>Bishop, William E.</creatorcontrib><creatorcontrib>Oby, Emily R.</creatorcontrib><creatorcontrib>Tyler-Kabara, Elizabeth C.</creatorcontrib><creatorcontrib>Chase, Steven M.</creatorcontrib><creatorcontrib>Batista, Aaron P.</creatorcontrib><creatorcontrib>Yu, Byron M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Degenhart, Alan D.</au><au>Bishop, William E.</au><au>Oby, Emily R.</au><au>Tyler-Kabara, Elizabeth C.</au><au>Chase, Steven M.</au><au>Batista, Aaron P.</au><au>Yu, Byron M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>4</volume><issue>7</issue><spage>672</spage><epage>685</epage><pages>672-685</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The instability of neural recordings can render clinical brain–computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs. Neural activity residing in a low-dimensional space that reflects specific correlation patterns among neurons can be used to maintain the performance of brain–computer interfaces in the presence of recording instabilities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32313100</pmid><doi>10.1038/s41551-020-0542-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4450-6313</orcidid><orcidid>https://orcid.org/0000-0003-2252-6938</orcidid><orcidid>https://orcid.org/0000-0002-8369-8517</orcidid><orcidid>https://orcid.org/0000-0003-2257-5115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2020-07, Vol.4 (7), p.672-685
issn 2157-846X
2157-846X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7822646
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 631/378/2632/1663
631/378/2632/2634
Alignment
Animals
Behavior, Animal
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Brain
Brain-Computer Interfaces
Control stability
Electrodes
Electroencephalography
Electrophysiology
Interface stability
Interfaces
Macaca mulatta
Male
Motor Cortex - physiology
Movement - physiology
Neurons
Neurons - physiology
Primates
Recording
User-Computer Interface
title Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20a%20brain%E2%80%93computer%20interface%20via%20the%20alignment%20of%20low-dimensional%20spaces%20of%20neural%20activity&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Degenhart,%20Alan%20D.&rft.date=2020-07-01&rft.volume=4&rft.issue=7&rft.spage=672&rft.epage=685&rft.pages=672-685&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-020-0542-9&rft_dat=%3Cproquest_pubme%3E2423336376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423336376&rft_id=info:pmid/32313100&rfr_iscdi=true