Surface Nanostructuring during Selective Area Epitaxy of Heterostructures with InGaAs QWs in the Ultra-Wide Windows

Selective area epitaxy (SAE) is widely used in photonic integrated circuits, but there is little information on the use of this technique for the growth of heterostructures in ultra-wide windows. Samples of heterostructures with InGaAs quantum wells (QWs) on GaAs (100) substrates with a pattern of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-12, Vol.11 (1), p.11, Article 11
Hauptverfasser: Shamakhov, Viktor, Nikolaev, Dmitriy, Slipchenko, Sergey, Fomin, Evgenii, Smirnov, Alexander, Eliseyev, Ilya, Pikhtin, Nikita, Kop'ev, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selective area epitaxy (SAE) is widely used in photonic integrated circuits, but there is little information on the use of this technique for the growth of heterostructures in ultra-wide windows. Samples of heterostructures with InGaAs quantum wells (QWs) on GaAs (100) substrates with a pattern of alternating stripes (100-mu m-wide SiO2 mask/100-mu m-wide window) were grown using metalorganic chemical vapour deposition (MOCVD). It was found that due to a local change in the growth rate of InGaAs QW in the window, the photoluminescence (PL) spectra measured from the edge to the center of the window exhibited maximum blueshifts of 14 and 19 meV at temperatures of 80 K and 300 K, respectively. Using atomic force microscopy, we have demonstrated that the surface morphologies of structures grown using standard epitaxy or SAE under identical MOCVD growth conditions correspond to a step flow growth with a step height of similar to 1.5 ML or a step bunching growth mode, respectively. In the structures grown with the use of SAE, a strong variation in the surface morphology in an ultra-wide window from its center to the edge was revealed, which is explained by a change in the local misorientation of the layer due to a local change in the growth rate over the width of the window.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11010011