Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications
We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices whic...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-01, Vol.60 (3), p.1152-1175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1175 |
---|---|
container_issue | 3 |
container_start_page | 1152 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Steiner, Anja Maria Lissel, Franziska Fery, Andreas Lauth, Jannika Scheele, Marcus |
description | We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
This Review provides an overview of the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. The characteristic properties of these nanocomposites pave the way to potential optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. |
doi_str_mv | 10.1002/anie.201916402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7821299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476860290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5052-faf8faffa1610c5707a74f375ec111be761e226a2815cb167c32ae5d185356223</originalsourceid><addsrcrecordid>eNqFkc9uEzEQhy0EoqVw5Ygscd7gseM_e0GKolAiVS2HcrYcZ5xutbUXe7coN96BN-yT4ColwImDNSP58-fR_Ah5C2wGjPEPLnY44wxaUHPGn5FTkBwaobV4Xvu5EI02Ek7Iq1JuK28MUy_JieCgRWvglPgvOZUB_VhoCnSZpqHHLb3Kuyr2Dz9-rmM69PTSxVTGPPlxylhoSJkub1zeIXVxS1cR825Pr7OLJWCmi2HoO-_GLsXymrwIri_45qmeka-fVtfLz83F1fl6ubhovGSSN8EFU09woIB5qZl2eh6ElugBYINaAXKuHDcg_QaU9oI7lFswUkjFuTgjHw_eYdrc4dZjHLPr7ZC7O5f3NrnO_nsTuxu7S_dWGw68bavg_ZMgp28TltHepinHOrPlc62MYrxllZodKF9XVzKG4w_A7GMo9jEUewylPnj391xH_HcKFWgPwPeux_1_dHZxuV79kf8CNrubwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476860290</pqid></control><display><type>article</type><title>Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Steiner, Anja Maria ; Lissel, Franziska ; Fery, Andreas ; Lauth, Jannika ; Scheele, Marcus</creator><creatorcontrib>Steiner, Anja Maria ; Lissel, Franziska ; Fery, Andreas ; Lauth, Jannika ; Scheele, Marcus</creatorcontrib><description>We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
This Review provides an overview of the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. The characteristic properties of these nanocomposites pave the way to potential optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201916402</identifier><identifier>PMID: 32173981</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Coupling (molecular) ; Current carriers ; Design criteria ; Energy charge ; Energy harvesting ; Energy transfer ; inorganic nanostructures ; Nanocomposites ; Optoelectronic devices ; organic π-Systems ; Photovoltaic cells ; Photovoltaics ; Physical chemistry ; plasmonics ; Review ; Reviews ; self-assembly ; Up-converters ; Upconversion</subject><ispartof>Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1152-1175</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5052-faf8faffa1610c5707a74f375ec111be761e226a2815cb167c32ae5d185356223</citedby><cites>FETCH-LOGICAL-c5052-faf8faffa1610c5707a74f375ec111be761e226a2815cb167c32ae5d185356223</cites><orcidid>0000-0001-6692-3762 ; 0000-0002-2704-3591 ; 0000-0002-6054-9615 ; 0000-0003-1881-2018 ; 0000-0003-0254-4565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201916402$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201916402$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32173981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steiner, Anja Maria</creatorcontrib><creatorcontrib>Lissel, Franziska</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><creatorcontrib>Lauth, Jannika</creatorcontrib><creatorcontrib>Scheele, Marcus</creatorcontrib><title>Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
This Review provides an overview of the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. The characteristic properties of these nanocomposites pave the way to potential optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer.</description><subject>Charge transfer</subject><subject>Coupling (molecular)</subject><subject>Current carriers</subject><subject>Design criteria</subject><subject>Energy charge</subject><subject>Energy harvesting</subject><subject>Energy transfer</subject><subject>inorganic nanostructures</subject><subject>Nanocomposites</subject><subject>Optoelectronic devices</subject><subject>organic π-Systems</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Physical chemistry</subject><subject>plasmonics</subject><subject>Review</subject><subject>Reviews</subject><subject>self-assembly</subject><subject>Up-converters</subject><subject>Upconversion</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc9uEzEQhy0EoqVw5Ygscd7gseM_e0GKolAiVS2HcrYcZ5xutbUXe7coN96BN-yT4ColwImDNSP58-fR_Ah5C2wGjPEPLnY44wxaUHPGn5FTkBwaobV4Xvu5EI02Ek7Iq1JuK28MUy_JieCgRWvglPgvOZUB_VhoCnSZpqHHLb3Kuyr2Dz9-rmM69PTSxVTGPPlxylhoSJkub1zeIXVxS1cR825Pr7OLJWCmi2HoO-_GLsXymrwIri_45qmeka-fVtfLz83F1fl6ubhovGSSN8EFU09woIB5qZl2eh6ElugBYINaAXKuHDcg_QaU9oI7lFswUkjFuTgjHw_eYdrc4dZjHLPr7ZC7O5f3NrnO_nsTuxu7S_dWGw68bavg_ZMgp28TltHepinHOrPlc62MYrxllZodKF9XVzKG4w_A7GMo9jEUewylPnj391xH_HcKFWgPwPeux_1_dHZxuV79kf8CNrubwg</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Steiner, Anja Maria</creator><creator>Lissel, Franziska</creator><creator>Fery, Andreas</creator><creator>Lauth, Jannika</creator><creator>Scheele, Marcus</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0002-2704-3591</orcidid><orcidid>https://orcid.org/0000-0002-6054-9615</orcidid><orcidid>https://orcid.org/0000-0003-1881-2018</orcidid><orcidid>https://orcid.org/0000-0003-0254-4565</orcidid></search><sort><creationdate>20210118</creationdate><title>Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications</title><author>Steiner, Anja Maria ; Lissel, Franziska ; Fery, Andreas ; Lauth, Jannika ; Scheele, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5052-faf8faffa1610c5707a74f375ec111be761e226a2815cb167c32ae5d185356223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Coupling (molecular)</topic><topic>Current carriers</topic><topic>Design criteria</topic><topic>Energy charge</topic><topic>Energy harvesting</topic><topic>Energy transfer</topic><topic>inorganic nanostructures</topic><topic>Nanocomposites</topic><topic>Optoelectronic devices</topic><topic>organic π-Systems</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Physical chemistry</topic><topic>plasmonics</topic><topic>Review</topic><topic>Reviews</topic><topic>self-assembly</topic><topic>Up-converters</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Anja Maria</creatorcontrib><creatorcontrib>Lissel, Franziska</creatorcontrib><creatorcontrib>Fery, Andreas</creatorcontrib><creatorcontrib>Lauth, Jannika</creatorcontrib><creatorcontrib>Scheele, Marcus</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steiner, Anja Maria</au><au>Lissel, Franziska</au><au>Fery, Andreas</au><au>Lauth, Jannika</au><au>Scheele, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>60</volume><issue>3</issue><spage>1152</spage><epage>1175</epage><pages>1152-1175</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
This Review provides an overview of the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. The characteristic properties of these nanocomposites pave the way to potential optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32173981</pmid><doi>10.1002/anie.201916402</doi><tpages>24</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6692-3762</orcidid><orcidid>https://orcid.org/0000-0002-2704-3591</orcidid><orcidid>https://orcid.org/0000-0002-6054-9615</orcidid><orcidid>https://orcid.org/0000-0003-1881-2018</orcidid><orcidid>https://orcid.org/0000-0003-0254-4565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-01, Vol.60 (3), p.1152-1175 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7821299 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Charge transfer Coupling (molecular) Current carriers Design criteria Energy charge Energy harvesting Energy transfer inorganic nanostructures Nanocomposites Optoelectronic devices organic π-Systems Photovoltaic cells Photovoltaics Physical chemistry plasmonics Review Reviews self-assembly Up-converters Upconversion |
title | Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20of%20Coupled%20Organic%E2%80%93Inorganic%20Nanostructures%20for%20Charge%20and%20Energy%20Transfer%20Applications&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Steiner,%20Anja%20Maria&rft.date=2021-01-18&rft.volume=60&rft.issue=3&rft.spage=1152&rft.epage=1175&rft.pages=1152-1175&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201916402&rft_dat=%3Cproquest_pubme%3E2476860290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476860290&rft_id=info:pmid/32173981&rfr_iscdi=true |