Machine learning approaches and databases for prediction of drug–target interaction: a survey paper

Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-01, Vol.22 (1), p.247-269
Hauptverfasser: Bagherian, Maryam, Sabeti, Elyas, Wang, Kai, Sartor, Maureen A, Nikolovska-Coleska, Zaneta, Najarian, Kayvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1
container_start_page 247
container_title Briefings in bioinformatics
container_volume 22
creator Bagherian, Maryam
Sabeti, Elyas
Wang, Kai
Sartor, Maureen A
Nikolovska-Coleska, Zaneta
Najarian, Kayvan
description Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
doi_str_mv 10.1093/bib/bbz157
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbz157</oup_id><sourcerecordid>2529966685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</originalsourceid><addsrcrecordid>eNp9kc1KHTEYhkOxePzb9AIkIN0Io0kmP5MuCkW0Cqd0U9fhyyRzjJyTTJMZwa68B--wV-Lo0YPddPX9PbzfCy9Cnyg5oUTXpzbYU2v_UKE-oB3Klao4EXzruZeqElzWM7Rbyi0hjKiGbqNZTbUgWrEd5H9AexOix0sPOYa4wND3OU1LXzBEhx0MYKFMU5cy7rN3oR1Cijh12OVx8ffhcYC88AMOcfAZXo5fMOAy5jt_j3vofd5HHztYFn_wWvfQ9cX5r7PLav7z-9XZt3nVCsKGyjrRaMdJpyn3nrWglG5rpjnUSvJadkRTqmzjZNvQ2jrWScaF1QCiIVLReg99Xev2o1151_o4ZFiaPocV5HuTIJh_LzHcmEW6M6phpOF6Ejh6Fcjp9-jLYG7TmOPk2TDBtJZSNmKijtdUm1Mp2XebD5SY50jMFIlZRzLBh-89bdC3DCbg8xpIY_8_oSd0WZc4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529966685</pqid></control><display><type>article</type><title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Bagherian, Maryam ; Sabeti, Elyas ; Wang, Kai ; Sartor, Maureen A ; Nikolovska-Coleska, Zaneta ; Najarian, Kayvan</creator><creatorcontrib>Bagherian, Maryam ; Sabeti, Elyas ; Wang, Kai ; Sartor, Maureen A ; Nikolovska-Coleska, Zaneta ; Najarian, Kayvan</creatorcontrib><description>Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbz157</identifier><identifier>PMID: 31950972</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology - methods ; Databases, Factual ; Drug Discovery - methods ; Humans ; Learning algorithms ; Machine Learning ; Predictions ; Review ; Therapeutic targets</subject><ispartof>Briefings in bioinformatics, 2021-01, Vol.22 (1), p.247-269</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2021</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</citedby><cites>FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31950972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagherian, Maryam</creatorcontrib><creatorcontrib>Sabeti, Elyas</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sartor, Maureen A</creatorcontrib><creatorcontrib>Nikolovska-Coleska, Zaneta</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</description><subject>Computational Biology - methods</subject><subject>Databases, Factual</subject><subject>Drug Discovery - methods</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Predictions</subject><subject>Review</subject><subject>Therapeutic targets</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1KHTEYhkOxePzb9AIkIN0Io0kmP5MuCkW0Cqd0U9fhyyRzjJyTTJMZwa68B--wV-Lo0YPddPX9PbzfCy9Cnyg5oUTXpzbYU2v_UKE-oB3Klao4EXzruZeqElzWM7Rbyi0hjKiGbqNZTbUgWrEd5H9AexOix0sPOYa4wND3OU1LXzBEhx0MYKFMU5cy7rN3oR1Cijh12OVx8ffhcYC88AMOcfAZXo5fMOAy5jt_j3vofd5HHztYFn_wWvfQ9cX5r7PLav7z-9XZt3nVCsKGyjrRaMdJpyn3nrWglG5rpjnUSvJadkRTqmzjZNvQ2jrWScaF1QCiIVLReg99Xev2o1151_o4ZFiaPocV5HuTIJh_LzHcmEW6M6phpOF6Ejh6Fcjp9-jLYG7TmOPk2TDBtJZSNmKijtdUm1Mp2XebD5SY50jMFIlZRzLBh-89bdC3DCbg8xpIY_8_oSd0WZc4</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Bagherian, Maryam</creator><creator>Sabeti, Elyas</creator><creator>Wang, Kai</creator><creator>Sartor, Maureen A</creator><creator>Nikolovska-Coleska, Zaneta</creator><creator>Najarian, Kayvan</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20210118</creationdate><title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</title><author>Bagherian, Maryam ; Sabeti, Elyas ; Wang, Kai ; Sartor, Maureen A ; Nikolovska-Coleska, Zaneta ; Najarian, Kayvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Biology - methods</topic><topic>Databases, Factual</topic><topic>Drug Discovery - methods</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Predictions</topic><topic>Review</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagherian, Maryam</creatorcontrib><creatorcontrib>Sabeti, Elyas</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sartor, Maureen A</creatorcontrib><creatorcontrib>Nikolovska-Coleska, Zaneta</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagherian, Maryam</au><au>Sabeti, Elyas</au><au>Wang, Kai</au><au>Sartor, Maureen A</au><au>Nikolovska-Coleska, Zaneta</au><au>Najarian, Kayvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>247</spage><epage>269</epage><pages>247-269</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31950972</pmid><doi>10.1093/bib/bbz157</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2021-01, Vol.22 (1), p.247-269
issn 1467-5463
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820849
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Oxford Journals Open Access Collection; PubMed Central
subjects Computational Biology - methods
Databases, Factual
Drug Discovery - methods
Humans
Learning algorithms
Machine Learning
Predictions
Review
Therapeutic targets
title Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approaches%20and%20databases%20for%20prediction%20of%20drug%E2%80%93target%20interaction:%20a%20survey%20paper&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Bagherian,%20Maryam&rft.date=2021-01-18&rft.volume=22&rft.issue=1&rft.spage=247&rft.epage=269&rft.pages=247-269&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbz157&rft_dat=%3Cproquest_pubme%3E2529966685%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529966685&rft_id=info:pmid/31950972&rft_oup_id=10.1093/bib/bbz157&rfr_iscdi=true