Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
Abstract The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2021-01, Vol.22 (1), p.247-269 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 1 |
container_start_page | 247 |
container_title | Briefings in bioinformatics |
container_volume | 22 |
creator | Bagherian, Maryam Sabeti, Elyas Wang, Kai Sartor, Maureen A Nikolovska-Coleska, Zaneta Najarian, Kayvan |
description | Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions. |
doi_str_mv | 10.1093/bib/bbz157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbz157</oup_id><sourcerecordid>2529966685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</originalsourceid><addsrcrecordid>eNp9kc1KHTEYhkOxePzb9AIkIN0Io0kmP5MuCkW0Cqd0U9fhyyRzjJyTTJMZwa68B--wV-Lo0YPddPX9PbzfCy9Cnyg5oUTXpzbYU2v_UKE-oB3Klao4EXzruZeqElzWM7Rbyi0hjKiGbqNZTbUgWrEd5H9AexOix0sPOYa4wND3OU1LXzBEhx0MYKFMU5cy7rN3oR1Cijh12OVx8ffhcYC88AMOcfAZXo5fMOAy5jt_j3vofd5HHztYFn_wWvfQ9cX5r7PLav7z-9XZt3nVCsKGyjrRaMdJpyn3nrWglG5rpjnUSvJadkRTqmzjZNvQ2jrWScaF1QCiIVLReg99Xev2o1151_o4ZFiaPocV5HuTIJh_LzHcmEW6M6phpOF6Ejh6Fcjp9-jLYG7TmOPk2TDBtJZSNmKijtdUm1Mp2XebD5SY50jMFIlZRzLBh-89bdC3DCbg8xpIY_8_oSd0WZc4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529966685</pqid></control><display><type>article</type><title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Bagherian, Maryam ; Sabeti, Elyas ; Wang, Kai ; Sartor, Maureen A ; Nikolovska-Coleska, Zaneta ; Najarian, Kayvan</creator><creatorcontrib>Bagherian, Maryam ; Sabeti, Elyas ; Wang, Kai ; Sartor, Maureen A ; Nikolovska-Coleska, Zaneta ; Najarian, Kayvan</creatorcontrib><description>Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbz157</identifier><identifier>PMID: 31950972</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology - methods ; Databases, Factual ; Drug Discovery - methods ; Humans ; Learning algorithms ; Machine Learning ; Predictions ; Review ; Therapeutic targets</subject><ispartof>Briefings in bioinformatics, 2021-01, Vol.22 (1), p.247-269</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2021</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</citedby><cites>FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31950972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagherian, Maryam</creatorcontrib><creatorcontrib>Sabeti, Elyas</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sartor, Maureen A</creatorcontrib><creatorcontrib>Nikolovska-Coleska, Zaneta</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</description><subject>Computational Biology - methods</subject><subject>Databases, Factual</subject><subject>Drug Discovery - methods</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Predictions</subject><subject>Review</subject><subject>Therapeutic targets</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1KHTEYhkOxePzb9AIkIN0Io0kmP5MuCkW0Cqd0U9fhyyRzjJyTTJMZwa68B--wV-Lo0YPddPX9PbzfCy9Cnyg5oUTXpzbYU2v_UKE-oB3Klao4EXzruZeqElzWM7Rbyi0hjKiGbqNZTbUgWrEd5H9AexOix0sPOYa4wND3OU1LXzBEhx0MYKFMU5cy7rN3oR1Cijh12OVx8ffhcYC88AMOcfAZXo5fMOAy5jt_j3vofd5HHztYFn_wWvfQ9cX5r7PLav7z-9XZt3nVCsKGyjrRaMdJpyn3nrWglG5rpjnUSvJadkRTqmzjZNvQ2jrWScaF1QCiIVLReg99Xev2o1151_o4ZFiaPocV5HuTIJh_LzHcmEW6M6phpOF6Ejh6Fcjp9-jLYG7TmOPk2TDBtJZSNmKijtdUm1Mp2XebD5SY50jMFIlZRzLBh-89bdC3DCbg8xpIY_8_oSd0WZc4</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Bagherian, Maryam</creator><creator>Sabeti, Elyas</creator><creator>Wang, Kai</creator><creator>Sartor, Maureen A</creator><creator>Nikolovska-Coleska, Zaneta</creator><creator>Najarian, Kayvan</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20210118</creationdate><title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</title><author>Bagherian, Maryam ; Sabeti, Elyas ; Wang, Kai ; Sartor, Maureen A ; Nikolovska-Coleska, Zaneta ; Najarian, Kayvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-bd589d40f914ee2ca779c3294a376436f09117b8d6c813bd2f6245b9aa5806713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Biology - methods</topic><topic>Databases, Factual</topic><topic>Drug Discovery - methods</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Predictions</topic><topic>Review</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagherian, Maryam</creatorcontrib><creatorcontrib>Sabeti, Elyas</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sartor, Maureen A</creatorcontrib><creatorcontrib>Nikolovska-Coleska, Zaneta</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagherian, Maryam</au><au>Sabeti, Elyas</au><au>Wang, Kai</au><au>Sartor, Maureen A</au><au>Nikolovska-Coleska, Zaneta</au><au>Najarian, Kayvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>247</spage><epage>269</epage><pages>247-269</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31950972</pmid><doi>10.1093/bib/bbz157</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2021-01, Vol.22 (1), p.247-269 |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820849 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Oxford Journals Open Access Collection; PubMed Central |
subjects | Computational Biology - methods Databases, Factual Drug Discovery - methods Humans Learning algorithms Machine Learning Predictions Review Therapeutic targets |
title | Machine learning approaches and databases for prediction of drug–target interaction: a survey paper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approaches%20and%20databases%20for%20prediction%20of%20drug%E2%80%93target%20interaction:%20a%20survey%20paper&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Bagherian,%20Maryam&rft.date=2021-01-18&rft.volume=22&rft.issue=1&rft.spage=247&rft.epage=269&rft.pages=247-269&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbz157&rft_dat=%3Cproquest_pubme%3E2529966685%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529966685&rft_id=info:pmid/31950972&rft_oup_id=10.1093/bib/bbz157&rfr_iscdi=true |