Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions
Biofilms contribute to bacterial infection and drug resistance and are a serious threat to global human health. Antibacterial nanomaterials have attracted considerable attention, but the inhibition of biofilms remains a major challenge. Herein, we propose a nanohole-boosted electron transport (NBET)...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-01, Vol.12 (1), p.493-15, Article 493 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 493 |
container_title | Nature communications |
container_volume | 12 |
creator | Shi, Tonglei Hou, Xuan Guo, Shuqing Zhang, Lei Wei, Changhong Peng, Ting Hu, Xiangang |
description | Biofilms contribute to bacterial infection and drug resistance and are a serious threat to global human health. Antibacterial nanomaterials have attracted considerable attention, but the inhibition of biofilms remains a major challenge. Herein, we propose a nanohole-boosted electron transport (NBET) antibiofilm concept. Unlike known antibacterial mechanisms (e.g., reactive oxygen species production and cell membrane damage), nanoholes with atomic vacancies and biofilms serve as electronic donors and receptors, respectively, and thus boost the high electron transport capacity between nanomaterials and biofilms. Electron transport effectively destroys the critical components (proteins, intercellularly adhered polysaccharides and extracellular DNA) of biofilms, and the nanoholes also significantly downregulate the expression of genes related to biofilm formation. The anti-infection capacity is thoroughly verified both in vitro (human cells) and in vivo (rat ocular and mouse intestinal infection models), and the nanohole-enabled nanomaterials are found to be highly biocompatible. Importantly, compared with typical antibiotics, nanomaterials are nonresistant and thereby exhibit high potential for use in various applications. As a proof-of-principle demonstration, these findings hold promise for the use of NBET in treatments for pathogenic bacterial infection and antibiotic drug resistance.
Nanomaterials have attracted attention as antibacterial agents and have several modes of action. Here, the authors report on 2D transition metal disulphide nanosheets with hole boosted electron donation/withdrawal for enhanced antibacterial and biofilm activity caused by electron damage. |
doi_str_mv | 10.1038/s41467-020-20547-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b6c5c16f8a0b47f5b93b5efa25c65425</doaj_id><sourcerecordid>2479577234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-986101f9667177ead8191c3bf97537435cbd99a1874e7ce276a0e73f7d7ed2413</originalsourceid><addsrcrecordid>eNqNks1u1DAYRSMEolXpC7BAkViigP8db5DQiJ9KFWxgbdnOl2lGM_Zge6jY8Q68IU_C16QM7QaRTeLk3Gs7x03zlJKXlPD-VRFUKN0RRjpGpNCdedCcMiJoRzXjD-88nzTnpWwIXtzQXojHzQnnQhtGzGmTPrqYrtIWOp9SqTC0sIVQc4ptzS6Wfcq19VCvAWIbkd25Cnly29K6OLTehXnYOhy3IcUA-9qOKc_srx8__ZTaKSKD4JRiedI8GjEM57f3s-bLu7efVx-6y0_vL1ZvLrsgBamd6RUldDRKaao1uKGnhgbuR6Ml14LL4AdjHO21AB2AaeUIaD7qQcPABOVnzcXSOyS3sfs87Vz-bpOb7Pwi5bV1uU5hC9arIANVY--IF3qU3nAvYXRMBiUFk9j1eunaH_wOhgARf832Xun9L3G6suv0zeqeEUUZFjy_Lcjp6wFKtZt0yBH3bxmKkBotCaTYQoWcSskwHmegxN44t4tzi87t7NwaDD27u7Zj5I9hBPoFuAafxhImQEdHDA-Fohy72Xw-VlN1N5pW6RArRl_8fxRpvtAFibiG_HeT_1j_b-X62po</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479577234</pqid></control><display><type>article</type><title>Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Shi, Tonglei ; Hou, Xuan ; Guo, Shuqing ; Zhang, Lei ; Wei, Changhong ; Peng, Ting ; Hu, Xiangang</creator><creatorcontrib>Shi, Tonglei ; Hou, Xuan ; Guo, Shuqing ; Zhang, Lei ; Wei, Changhong ; Peng, Ting ; Hu, Xiangang</creatorcontrib><description>Biofilms contribute to bacterial infection and drug resistance and are a serious threat to global human health. Antibacterial nanomaterials have attracted considerable attention, but the inhibition of biofilms remains a major challenge. Herein, we propose a nanohole-boosted electron transport (NBET) antibiofilm concept. Unlike known antibacterial mechanisms (e.g., reactive oxygen species production and cell membrane damage), nanoholes with atomic vacancies and biofilms serve as electronic donors and receptors, respectively, and thus boost the high electron transport capacity between nanomaterials and biofilms. Electron transport effectively destroys the critical components (proteins, intercellularly adhered polysaccharides and extracellular DNA) of biofilms, and the nanoholes also significantly downregulate the expression of genes related to biofilm formation. The anti-infection capacity is thoroughly verified both in vitro (human cells) and in vivo (rat ocular and mouse intestinal infection models), and the nanohole-enabled nanomaterials are found to be highly biocompatible. Importantly, compared with typical antibiotics, nanomaterials are nonresistant and thereby exhibit high potential for use in various applications. As a proof-of-principle demonstration, these findings hold promise for the use of NBET in treatments for pathogenic bacterial infection and antibiotic drug resistance.
Nanomaterials have attracted attention as antibacterial agents and have several modes of action. Here, the authors report on 2D transition metal disulphide nanosheets with hole boosted electron donation/withdrawal for enhanced antibacterial and biofilm activity caused by electron damage.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-20547-9</identifier><identifier>PMID: 33479209</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 13/31 ; 14/3 ; 147/28 ; 38/47 ; 631/326/22 ; 639/301/54/990 ; 639/925/352 ; 64/86 ; 692/700/228 ; Animal models ; Animals ; Anti-Bacterial Agents - administration & dosage ; Antibacterial agents ; Antibiotics ; Bacteria ; Bacterial diseases ; Bacterial infections ; Biocompatibility ; Biofilms ; Biofilms - drug effects ; Caco-2 Cells ; Cell membranes ; Critical components ; Damage ; Deoxyribonucleic acid ; DNA ; Donors (electronic) ; Drug resistance ; Electron transport ; Electron Transport - drug effects ; Gene expression ; Health risks ; Humanities and Social Sciences ; Humans ; Infections ; Intestine ; Mice ; Mice, Inbred ICR ; Microbial Sensitivity Tests ; multidisciplinary ; Multidisciplinary Sciences ; Nanomaterials ; Nanostructures - administration & dosage ; Nanotechnology ; Polysaccharides ; Rats ; Rats, Sprague-Dawley ; Reactive oxygen species ; Saccharides ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Staphylococcal Infections - drug therapy ; Staphylococcal Infections - microbiology ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - physiology ; Transition metals</subject><ispartof>Nature communications, 2021-01, Vol.12 (1), p.493-15, Article 493</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>104</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000613038200003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-986101f9667177ead8191c3bf97537435cbd99a1874e7ce276a0e73f7d7ed2413</citedby><cites>FETCH-LOGICAL-c540t-986101f9667177ead8191c3bf97537435cbd99a1874e7ce276a0e73f7d7ed2413</cites><orcidid>0000-0002-9403-816X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33479209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Tonglei</creatorcontrib><creatorcontrib>Hou, Xuan</creatorcontrib><creatorcontrib>Guo, Shuqing</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wei, Changhong</creatorcontrib><creatorcontrib>Peng, Ting</creatorcontrib><creatorcontrib>Hu, Xiangang</creatorcontrib><title>Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Biofilms contribute to bacterial infection and drug resistance and are a serious threat to global human health. Antibacterial nanomaterials have attracted considerable attention, but the inhibition of biofilms remains a major challenge. Herein, we propose a nanohole-boosted electron transport (NBET) antibiofilm concept. Unlike known antibacterial mechanisms (e.g., reactive oxygen species production and cell membrane damage), nanoholes with atomic vacancies and biofilms serve as electronic donors and receptors, respectively, and thus boost the high electron transport capacity between nanomaterials and biofilms. Electron transport effectively destroys the critical components (proteins, intercellularly adhered polysaccharides and extracellular DNA) of biofilms, and the nanoholes also significantly downregulate the expression of genes related to biofilm formation. The anti-infection capacity is thoroughly verified both in vitro (human cells) and in vivo (rat ocular and mouse intestinal infection models), and the nanohole-enabled nanomaterials are found to be highly biocompatible. Importantly, compared with typical antibiotics, nanomaterials are nonresistant and thereby exhibit high potential for use in various applications. As a proof-of-principle demonstration, these findings hold promise for the use of NBET in treatments for pathogenic bacterial infection and antibiotic drug resistance.
Nanomaterials have attracted attention as antibacterial agents and have several modes of action. Here, the authors report on 2D transition metal disulphide nanosheets with hole boosted electron donation/withdrawal for enhanced antibacterial and biofilm activity caused by electron damage.</description><subject>119/118</subject><subject>13/31</subject><subject>14/3</subject><subject>147/28</subject><subject>38/47</subject><subject>631/326/22</subject><subject>639/301/54/990</subject><subject>639/925/352</subject><subject>64/86</subject><subject>692/700/228</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - administration & dosage</subject><subject>Antibacterial agents</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Biocompatibility</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Caco-2 Cells</subject><subject>Cell membranes</subject><subject>Critical components</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Donors (electronic)</subject><subject>Drug resistance</subject><subject>Electron transport</subject><subject>Electron Transport - drug effects</subject><subject>Gene expression</subject><subject>Health risks</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infections</subject><subject>Intestine</subject><subject>Mice</subject><subject>Mice, Inbred ICR</subject><subject>Microbial Sensitivity Tests</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nanomaterials</subject><subject>Nanostructures - administration & dosage</subject><subject>Nanotechnology</subject><subject>Polysaccharides</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive oxygen species</subject><subject>Saccharides</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Staphylococcal Infections - drug therapy</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - physiology</subject><subject>Transition metals</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAYRSMEolXpC7BAkViigP8db5DQiJ9KFWxgbdnOl2lGM_Zge6jY8Q68IU_C16QM7QaRTeLk3Gs7x03zlJKXlPD-VRFUKN0RRjpGpNCdedCcMiJoRzXjD-88nzTnpWwIXtzQXojHzQnnQhtGzGmTPrqYrtIWOp9SqTC0sIVQc4ptzS6Wfcq19VCvAWIbkd25Cnly29K6OLTehXnYOhy3IcUA-9qOKc_srx8__ZTaKSKD4JRiedI8GjEM57f3s-bLu7efVx-6y0_vL1ZvLrsgBamd6RUldDRKaao1uKGnhgbuR6Ml14LL4AdjHO21AB2AaeUIaD7qQcPABOVnzcXSOyS3sfs87Vz-bpOb7Pwi5bV1uU5hC9arIANVY--IF3qU3nAvYXRMBiUFk9j1eunaH_wOhgARf832Xun9L3G6suv0zeqeEUUZFjy_Lcjp6wFKtZt0yBH3bxmKkBotCaTYQoWcSskwHmegxN44t4tzi87t7NwaDD27u7Zj5I9hBPoFuAafxhImQEdHDA-Fohy72Xw-VlN1N5pW6RArRl_8fxRpvtAFibiG_HeT_1j_b-X62po</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Shi, Tonglei</creator><creator>Hou, Xuan</creator><creator>Guo, Shuqing</creator><creator>Zhang, Lei</creator><creator>Wei, Changhong</creator><creator>Peng, Ting</creator><creator>Hu, Xiangang</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9403-816X</orcidid></search><sort><creationdate>20210121</creationdate><title>Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions</title><author>Shi, Tonglei ; Hou, Xuan ; Guo, Shuqing ; Zhang, Lei ; Wei, Changhong ; Peng, Ting ; Hu, Xiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-986101f9667177ead8191c3bf97537435cbd99a1874e7ce276a0e73f7d7ed2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>13/31</topic><topic>14/3</topic><topic>147/28</topic><topic>38/47</topic><topic>631/326/22</topic><topic>639/301/54/990</topic><topic>639/925/352</topic><topic>64/86</topic><topic>692/700/228</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - administration & dosage</topic><topic>Antibacterial agents</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Biocompatibility</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Caco-2 Cells</topic><topic>Cell membranes</topic><topic>Critical components</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Donors (electronic)</topic><topic>Drug resistance</topic><topic>Electron transport</topic><topic>Electron Transport - drug effects</topic><topic>Gene expression</topic><topic>Health risks</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infections</topic><topic>Intestine</topic><topic>Mice</topic><topic>Mice, Inbred ICR</topic><topic>Microbial Sensitivity Tests</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nanomaterials</topic><topic>Nanostructures - administration & dosage</topic><topic>Nanotechnology</topic><topic>Polysaccharides</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive oxygen species</topic><topic>Saccharides</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Staphylococcal Infections - drug therapy</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - physiology</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Tonglei</creatorcontrib><creatorcontrib>Hou, Xuan</creatorcontrib><creatorcontrib>Guo, Shuqing</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wei, Changhong</creatorcontrib><creatorcontrib>Peng, Ting</creatorcontrib><creatorcontrib>Hu, Xiangang</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Tonglei</au><au>Hou, Xuan</au><au>Guo, Shuqing</au><au>Zhang, Lei</au><au>Wei, Changhong</au><au>Peng, Ting</au><au>Hu, Xiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>493</spage><epage>15</epage><pages>493-15</pages><artnum>493</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Biofilms contribute to bacterial infection and drug resistance and are a serious threat to global human health. Antibacterial nanomaterials have attracted considerable attention, but the inhibition of biofilms remains a major challenge. Herein, we propose a nanohole-boosted electron transport (NBET) antibiofilm concept. Unlike known antibacterial mechanisms (e.g., reactive oxygen species production and cell membrane damage), nanoholes with atomic vacancies and biofilms serve as electronic donors and receptors, respectively, and thus boost the high electron transport capacity between nanomaterials and biofilms. Electron transport effectively destroys the critical components (proteins, intercellularly adhered polysaccharides and extracellular DNA) of biofilms, and the nanoholes also significantly downregulate the expression of genes related to biofilm formation. The anti-infection capacity is thoroughly verified both in vitro (human cells) and in vivo (rat ocular and mouse intestinal infection models), and the nanohole-enabled nanomaterials are found to be highly biocompatible. Importantly, compared with typical antibiotics, nanomaterials are nonresistant and thereby exhibit high potential for use in various applications. As a proof-of-principle demonstration, these findings hold promise for the use of NBET in treatments for pathogenic bacterial infection and antibiotic drug resistance.
Nanomaterials have attracted attention as antibacterial agents and have several modes of action. Here, the authors report on 2D transition metal disulphide nanosheets with hole boosted electron donation/withdrawal for enhanced antibacterial and biofilm activity caused by electron damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33479209</pmid><doi>10.1038/s41467-020-20547-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9403-816X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-01, Vol.12 (1), p.493-15, Article 493 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820612 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 119/118 13/31 14/3 147/28 38/47 631/326/22 639/301/54/990 639/925/352 64/86 692/700/228 Animal models Animals Anti-Bacterial Agents - administration & dosage Antibacterial agents Antibiotics Bacteria Bacterial diseases Bacterial infections Biocompatibility Biofilms Biofilms - drug effects Caco-2 Cells Cell membranes Critical components Damage Deoxyribonucleic acid DNA Donors (electronic) Drug resistance Electron transport Electron Transport - drug effects Gene expression Health risks Humanities and Social Sciences Humans Infections Intestine Mice Mice, Inbred ICR Microbial Sensitivity Tests multidisciplinary Multidisciplinary Sciences Nanomaterials Nanostructures - administration & dosage Nanotechnology Polysaccharides Rats Rats, Sprague-Dawley Reactive oxygen species Saccharides Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Staphylococcal Infections - drug therapy Staphylococcal Infections - microbiology Staphylococcus aureus - drug effects Staphylococcus aureus - physiology Transition metals |
title | Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanohole-boosted%20electron%20transport%20between%20nanomaterials%20and%20bacteria%20as%20a%20concept%20for%20nano%E2%80%93bio%20interactions&rft.jtitle=Nature%20communications&rft.au=Shi,%20Tonglei&rft.date=2021-01-21&rft.volume=12&rft.issue=1&rft.spage=493&rft.epage=15&rft.pages=493-15&rft.artnum=493&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-20547-9&rft_dat=%3Cproquest_pubme%3E2479577234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479577234&rft_id=info:pmid/33479209&rft_doaj_id=oai_doaj_org_article_b6c5c16f8a0b47f5b93b5efa25c65425&rfr_iscdi=true |