Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery

Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-01, Vol.11 (1), p.1934, Article 1934
Hauptverfasser: Weber-Adrian, Danielle, Kofoed, Rikke Hahn, Silburt, Joseph, Noroozian, Zeinab, Shah, Kairavi, Burgess, Alison, Rideout, Shawna, Kügler, Sebastian, Hynynen, Kullervo, Aubert, Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1934
container_title Scientific reports
container_volume 11
creator Weber-Adrian, Danielle
Kofoed, Rikke Hahn
Silburt, Joseph
Noroozian, Zeinab
Shah, Kairavi
Burgess, Alison
Rideout, Shawna
Kügler, Sebastian
Hynynen, Kullervo
Aubert, Isabelle
description Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.
doi_str_mv 10.1038/s41598-021-81046-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479578319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c176d1a21bf8c00d2884ae1588713f9b7ea6c34374705130dc9c73b596a498853</originalsourceid><addsrcrecordid>eNp9kUtrHSEcxaW0NOE2X6CLIhS6iq3PGd0ULiGPQqCFPrbiqHNjmNFbnUl6v1c_YJzcNE03daF_8Pg7Rw4Arwl-TzCTHwonQkmEKUGSYN4g8QwcUswFoozS50_mA3BUyjWuS1DFiXoJDhjjrWKEH4LfX3dl8mOwcL3-0aCyi2ZbQkTnZ1-gcWOIoUzZTCFFmH2Zh6nAEOGQbn2GQ7ipexeSW0ShmxfZMbRp3JrsHZzSAiXvKDTRLaM6hrdhuoLRzzlFM0D_a1upZaH3aajUEDewmmRT0hwdGr0LZqqoLptq6_y95e4VeNGbofijh3MFvp-dfju5QJefzz-drC-RFYRMyJK2ccRQ0vXSYuyolNx4IqRsCetV13rTWMZZy1ssCMPOKtuyTqjGcCWlYCvwcc_dzl2NYn2syQa9zWE0eaeTCfrfmxiu9Cbd6FZSzGpNK_D2AZDTz9mXSV-nOdefF01rA6KVjKiqonuVzamU7PtHB4L1Urbel61r2fq-bL1ke_M02-OTP9VWAdsLSr2KG5__ev8HewdORrhk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479578319</pqid></control><display><type>article</type><title>Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&amp;2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Weber-Adrian, Danielle ; Kofoed, Rikke Hahn ; Silburt, Joseph ; Noroozian, Zeinab ; Shah, Kairavi ; Burgess, Alison ; Rideout, Shawna ; Kügler, Sebastian ; Hynynen, Kullervo ; Aubert, Isabelle</creator><creatorcontrib>Weber-Adrian, Danielle ; Kofoed, Rikke Hahn ; Silburt, Joseph ; Noroozian, Zeinab ; Shah, Kairavi ; Burgess, Alison ; Rideout, Shawna ; Kügler, Sebastian ; Hynynen, Kullervo ; Aubert, Isabelle</creatorcontrib><description>Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&amp;2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&amp;2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&amp;2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&amp;2, while providing neuronal GFP expression in the striatum and hippocampus.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-81046-5</identifier><identifier>PMID: 33479314</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1341 ; 631/378/340 ; Animals ; Blood-brain barrier ; Blood-Brain Barrier - drug effects ; Brain - diagnostic imaging ; Brain - drug effects ; Brain - metabolism ; Dependovirus - genetics ; Gene transfer ; Genetic Therapy ; Genetic Vectors - therapeutic use ; Green fluorescent protein ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - pharmacology ; Hippocampus ; Humanities and Social Sciences ; Humans ; Injection ; Injections, Intravenous ; Intravenous administration ; Liver ; Liver - diagnostic imaging ; Liver - drug effects ; Magnetic Resonance Imaging ; Mice ; multidisciplinary ; Neostriatum ; Neurons - drug effects ; Promoter Regions, Genetic ; Science ; Science (multidisciplinary) ; Serotypes ; Synapsin ; Synapsins - chemistry ; Synapsins - pharmacology ; Tissue Distribution ; Transduction, Genetic ; Ultrasonic imaging ; Ultrasonography ; Ultrasound</subject><ispartof>Scientific reports, 2021-01, Vol.11 (1), p.1934, Article 1934</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c176d1a21bf8c00d2884ae1588713f9b7ea6c34374705130dc9c73b596a498853</citedby><cites>FETCH-LOGICAL-c511t-c176d1a21bf8c00d2884ae1588713f9b7ea6c34374705130dc9c73b596a498853</cites><orcidid>0000-0003-0177-0739 ; 0000-0001-6219-2982 ; 0000-0001-5163-9961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820310/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820310/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33479314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber-Adrian, Danielle</creatorcontrib><creatorcontrib>Kofoed, Rikke Hahn</creatorcontrib><creatorcontrib>Silburt, Joseph</creatorcontrib><creatorcontrib>Noroozian, Zeinab</creatorcontrib><creatorcontrib>Shah, Kairavi</creatorcontrib><creatorcontrib>Burgess, Alison</creatorcontrib><creatorcontrib>Rideout, Shawna</creatorcontrib><creatorcontrib>Kügler, Sebastian</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><creatorcontrib>Aubert, Isabelle</creatorcontrib><title>Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&amp;2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&amp;2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&amp;2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&amp;2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&amp;2, while providing neuronal GFP expression in the striatum and hippocampus.</description><subject>631/378/1341</subject><subject>631/378/340</subject><subject>Animals</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Dependovirus - genetics</subject><subject>Gene transfer</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - therapeutic use</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - pharmacology</subject><subject>Hippocampus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Injection</subject><subject>Injections, Intravenous</subject><subject>Intravenous administration</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Liver - drug effects</subject><subject>Magnetic Resonance Imaging</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Neostriatum</subject><subject>Neurons - drug effects</subject><subject>Promoter Regions, Genetic</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serotypes</subject><subject>Synapsin</subject><subject>Synapsins - chemistry</subject><subject>Synapsins - pharmacology</subject><subject>Tissue Distribution</subject><subject>Transduction, Genetic</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtrHSEcxaW0NOE2X6CLIhS6iq3PGd0ULiGPQqCFPrbiqHNjmNFbnUl6v1c_YJzcNE03daF_8Pg7Rw4Arwl-TzCTHwonQkmEKUGSYN4g8QwcUswFoozS50_mA3BUyjWuS1DFiXoJDhjjrWKEH4LfX3dl8mOwcL3-0aCyi2ZbQkTnZ1-gcWOIoUzZTCFFmH2Zh6nAEOGQbn2GQ7ipexeSW0ShmxfZMbRp3JrsHZzSAiXvKDTRLaM6hrdhuoLRzzlFM0D_a1upZaH3aajUEDewmmRT0hwdGr0LZqqoLptq6_y95e4VeNGbofijh3MFvp-dfju5QJefzz-drC-RFYRMyJK2ccRQ0vXSYuyolNx4IqRsCetV13rTWMZZy1ssCMPOKtuyTqjGcCWlYCvwcc_dzl2NYn2syQa9zWE0eaeTCfrfmxiu9Cbd6FZSzGpNK_D2AZDTz9mXSV-nOdefF01rA6KVjKiqonuVzamU7PtHB4L1Urbel61r2fq-bL1ke_M02-OTP9VWAdsLSr2KG5__ev8HewdORrhk</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Weber-Adrian, Danielle</creator><creator>Kofoed, Rikke Hahn</creator><creator>Silburt, Joseph</creator><creator>Noroozian, Zeinab</creator><creator>Shah, Kairavi</creator><creator>Burgess, Alison</creator><creator>Rideout, Shawna</creator><creator>Kügler, Sebastian</creator><creator>Hynynen, Kullervo</creator><creator>Aubert, Isabelle</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0177-0739</orcidid><orcidid>https://orcid.org/0000-0001-6219-2982</orcidid><orcidid>https://orcid.org/0000-0001-5163-9961</orcidid></search><sort><creationdate>20210121</creationdate><title>Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&amp;2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery</title><author>Weber-Adrian, Danielle ; Kofoed, Rikke Hahn ; Silburt, Joseph ; Noroozian, Zeinab ; Shah, Kairavi ; Burgess, Alison ; Rideout, Shawna ; Kügler, Sebastian ; Hynynen, Kullervo ; Aubert, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c176d1a21bf8c00d2884ae1588713f9b7ea6c34374705130dc9c73b596a498853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/1341</topic><topic>631/378/340</topic><topic>Animals</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Dependovirus - genetics</topic><topic>Gene transfer</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - therapeutic use</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - pharmacology</topic><topic>Hippocampus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Injection</topic><topic>Injections, Intravenous</topic><topic>Intravenous administration</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Liver - drug effects</topic><topic>Magnetic Resonance Imaging</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Neostriatum</topic><topic>Neurons - drug effects</topic><topic>Promoter Regions, Genetic</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serotypes</topic><topic>Synapsin</topic><topic>Synapsins - chemistry</topic><topic>Synapsins - pharmacology</topic><topic>Tissue Distribution</topic><topic>Transduction, Genetic</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber-Adrian, Danielle</creatorcontrib><creatorcontrib>Kofoed, Rikke Hahn</creatorcontrib><creatorcontrib>Silburt, Joseph</creatorcontrib><creatorcontrib>Noroozian, Zeinab</creatorcontrib><creatorcontrib>Shah, Kairavi</creatorcontrib><creatorcontrib>Burgess, Alison</creatorcontrib><creatorcontrib>Rideout, Shawna</creatorcontrib><creatorcontrib>Kügler, Sebastian</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><creatorcontrib>Aubert, Isabelle</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber-Adrian, Danielle</au><au>Kofoed, Rikke Hahn</au><au>Silburt, Joseph</au><au>Noroozian, Zeinab</au><au>Shah, Kairavi</au><au>Burgess, Alison</au><au>Rideout, Shawna</au><au>Kügler, Sebastian</au><au>Hynynen, Kullervo</au><au>Aubert, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&amp;2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>1934</spage><pages>1934-</pages><artnum>1934</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&amp;2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&amp;2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&amp;2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&amp;2, while providing neuronal GFP expression in the striatum and hippocampus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33479314</pmid><doi>10.1038/s41598-021-81046-5</doi><orcidid>https://orcid.org/0000-0003-0177-0739</orcidid><orcidid>https://orcid.org/0000-0001-6219-2982</orcidid><orcidid>https://orcid.org/0000-0001-5163-9961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-01, Vol.11 (1), p.1934, Article 1934
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820310
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/378/1341
631/378/340
Animals
Blood-brain barrier
Blood-Brain Barrier - drug effects
Brain - diagnostic imaging
Brain - drug effects
Brain - metabolism
Dependovirus - genetics
Gene transfer
Genetic Therapy
Genetic Vectors - therapeutic use
Green fluorescent protein
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - pharmacology
Hippocampus
Humanities and Social Sciences
Humans
Injection
Injections, Intravenous
Intravenous administration
Liver
Liver - diagnostic imaging
Liver - drug effects
Magnetic Resonance Imaging
Mice
multidisciplinary
Neostriatum
Neurons - drug effects
Promoter Regions, Genetic
Science
Science (multidisciplinary)
Serotypes
Synapsin
Synapsins - chemistry
Synapsins - pharmacology
Tissue Distribution
Transduction, Genetic
Ultrasonic imaging
Ultrasonography
Ultrasound
title Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systemic%20AAV6-synapsin-GFP%20administration%20results%20in%20lower%20liver%20biodistribution,%20compared%20to%20AAV1&2%20and%20AAV9,%20with%20neuronal%20expression%20following%20ultrasound-mediated%20brain%20delivery&rft.jtitle=Scientific%20reports&rft.au=Weber-Adrian,%20Danielle&rft.date=2021-01-21&rft.volume=11&rft.issue=1&rft.spage=1934&rft.pages=1934-&rft.artnum=1934&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-81046-5&rft_dat=%3Cproquest_pubme%3E2479578319%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479578319&rft_id=info:pmid/33479314&rfr_iscdi=true