Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists
Objectives Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it...
Gespeichert in:
Veröffentlicht in: | Digestive endoscopy 2021-01, Vol.33 (1), p.141-150 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 1 |
container_start_page | 141 |
container_title | Digestive endoscopy |
container_volume | 33 |
creator | Ikenoyama, Yohei Hirasawa, Toshiaki Ishioka, Mitsuaki Namikawa, Ken Yoshimizu, Shoichi Horiuchi, Yusuke Ishiyama, Akiyoshi Yoshio, Toshiyuki Tsuchida, Tomohiro Takeuchi, Yoshinori Shichijo, Satoki Katayama, Naoyuki Fujisaki, Junko Tada, Tomohiro |
description | Objectives
Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists.
Methods
The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases).
Results
The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%).
Conclusion
The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future. |
doi_str_mv | 10.1111/den.13688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7818187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389213577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhwB9APsIhbcZOYi8HpGr7AVIFFzhbE2eyNWTtxXa6WvHncbulggMeyXOYR8-M9DL2GuoTKO90IH8CstP6CVtA08gKug6eskW9hLZqO9kesRcpfa9rEMumec6OpBBaANQL9uucMtns_JoTxmnP15hydJZb9Jbie74Kmy1Gl4LnPeUdkef5hvjgcO1DyoXE3k0u73kYuQ3-NkxzdsHjxD3N8b7lXYg_Ekc_cPJDSDZsXcrpJXs24pTo1UM_Zt8uL76uPlbXX64-rc6uK9vWra4aRcIK1XZDh0q3HQioB9lITaDFiEiIPSrorSa5LD8o28gRVWthUM3Yy2P24eDdzv2GBks-l7vMNroNxr0J6My_E-9uzDrcGqWhlCqCtw-CGH7OlLLZuGRpmtBTmJMRUi8FyFbdoe8OqI0hpUjj4xqozV1YpoRl7sMq7Ju_73ok_6RTgNMDsHMT7f9vMucXnw_K31uJoro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389213577</pqid></control><display><type>article</type><title>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ikenoyama, Yohei ; Hirasawa, Toshiaki ; Ishioka, Mitsuaki ; Namikawa, Ken ; Yoshimizu, Shoichi ; Horiuchi, Yusuke ; Ishiyama, Akiyoshi ; Yoshio, Toshiyuki ; Tsuchida, Tomohiro ; Takeuchi, Yoshinori ; Shichijo, Satoki ; Katayama, Naoyuki ; Fujisaki, Junko ; Tada, Tomohiro</creator><creatorcontrib>Ikenoyama, Yohei ; Hirasawa, Toshiaki ; Ishioka, Mitsuaki ; Namikawa, Ken ; Yoshimizu, Shoichi ; Horiuchi, Yusuke ; Ishiyama, Akiyoshi ; Yoshio, Toshiyuki ; Tsuchida, Tomohiro ; Takeuchi, Yoshinori ; Shichijo, Satoki ; Katayama, Naoyuki ; Fujisaki, Junko ; Tada, Tomohiro</creatorcontrib><description>Objectives
Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists.
Methods
The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases).
Results
The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%).
Conclusion
The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.</description><identifier>ISSN: 0915-5635</identifier><identifier>EISSN: 1443-1661</identifier><identifier>DOI: 10.1111/den.13688</identifier><identifier>PMID: 32282110</identifier><language>eng</language><publisher>Australia: John Wiley and Sons Inc</publisher><subject>artificial intelligence ; convolutional neural network ; deep learning ; endoscopy ; gastric cancer ; Original</subject><ispartof>Digestive endoscopy, 2021-01, Vol.33 (1), p.141-150</ispartof><rights>2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japan Gastroenterological Endoscopy Society.</rights><rights>2020 The Authors. Digestive Endoscopy published by John Wiley & Sons Australia, Ltd on behalf of Japan Gastroenterological Endoscopy Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</citedby><cites>FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</cites><orcidid>0000-0002-7853-4454 ; 0000-0001-5035-3195 ; 0000-0002-2936-4612 ; 0000-0001-9821-0513 ; 0000-0002-5750-0976 ; 0000-0002-6450-1934 ; 0000-0002-6546-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fden.13688$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fden.13688$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32282110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikenoyama, Yohei</creatorcontrib><creatorcontrib>Hirasawa, Toshiaki</creatorcontrib><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Namikawa, Ken</creatorcontrib><creatorcontrib>Yoshimizu, Shoichi</creatorcontrib><creatorcontrib>Horiuchi, Yusuke</creatorcontrib><creatorcontrib>Ishiyama, Akiyoshi</creatorcontrib><creatorcontrib>Yoshio, Toshiyuki</creatorcontrib><creatorcontrib>Tsuchida, Tomohiro</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Shichijo, Satoki</creatorcontrib><creatorcontrib>Katayama, Naoyuki</creatorcontrib><creatorcontrib>Fujisaki, Junko</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><title>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</title><title>Digestive endoscopy</title><addtitle>Dig Endosc</addtitle><description>Objectives
Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists.
Methods
The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases).
Results
The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%).
Conclusion
The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.</description><subject>artificial intelligence</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>endoscopy</subject><subject>gastric cancer</subject><subject>Original</subject><issn>0915-5635</issn><issn>1443-1661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1v1DAQhi0EokvhwB9APsIhbcZOYi8HpGr7AVIFFzhbE2eyNWTtxXa6WvHncbulggMeyXOYR8-M9DL2GuoTKO90IH8CstP6CVtA08gKug6eskW9hLZqO9kesRcpfa9rEMumec6OpBBaANQL9uucMtns_JoTxmnP15hydJZb9Jbie74Kmy1Gl4LnPeUdkef5hvjgcO1DyoXE3k0u73kYuQ3-NkxzdsHjxD3N8b7lXYg_Ekc_cPJDSDZsXcrpJXs24pTo1UM_Zt8uL76uPlbXX64-rc6uK9vWra4aRcIK1XZDh0q3HQioB9lITaDFiEiIPSrorSa5LD8o28gRVWthUM3Yy2P24eDdzv2GBks-l7vMNroNxr0J6My_E-9uzDrcGqWhlCqCtw-CGH7OlLLZuGRpmtBTmJMRUi8FyFbdoe8OqI0hpUjj4xqozV1YpoRl7sMq7Ju_73ok_6RTgNMDsHMT7f9vMucXnw_K31uJoro</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Ikenoyama, Yohei</creator><creator>Hirasawa, Toshiaki</creator><creator>Ishioka, Mitsuaki</creator><creator>Namikawa, Ken</creator><creator>Yoshimizu, Shoichi</creator><creator>Horiuchi, Yusuke</creator><creator>Ishiyama, Akiyoshi</creator><creator>Yoshio, Toshiyuki</creator><creator>Tsuchida, Tomohiro</creator><creator>Takeuchi, Yoshinori</creator><creator>Shichijo, Satoki</creator><creator>Katayama, Naoyuki</creator><creator>Fujisaki, Junko</creator><creator>Tada, Tomohiro</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7853-4454</orcidid><orcidid>https://orcid.org/0000-0001-5035-3195</orcidid><orcidid>https://orcid.org/0000-0002-2936-4612</orcidid><orcidid>https://orcid.org/0000-0001-9821-0513</orcidid><orcidid>https://orcid.org/0000-0002-5750-0976</orcidid><orcidid>https://orcid.org/0000-0002-6450-1934</orcidid><orcidid>https://orcid.org/0000-0002-6546-0329</orcidid></search><sort><creationdate>202101</creationdate><title>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</title><author>Ikenoyama, Yohei ; Hirasawa, Toshiaki ; Ishioka, Mitsuaki ; Namikawa, Ken ; Yoshimizu, Shoichi ; Horiuchi, Yusuke ; Ishiyama, Akiyoshi ; Yoshio, Toshiyuki ; Tsuchida, Tomohiro ; Takeuchi, Yoshinori ; Shichijo, Satoki ; Katayama, Naoyuki ; Fujisaki, Junko ; Tada, Tomohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>endoscopy</topic><topic>gastric cancer</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikenoyama, Yohei</creatorcontrib><creatorcontrib>Hirasawa, Toshiaki</creatorcontrib><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Namikawa, Ken</creatorcontrib><creatorcontrib>Yoshimizu, Shoichi</creatorcontrib><creatorcontrib>Horiuchi, Yusuke</creatorcontrib><creatorcontrib>Ishiyama, Akiyoshi</creatorcontrib><creatorcontrib>Yoshio, Toshiyuki</creatorcontrib><creatorcontrib>Tsuchida, Tomohiro</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Shichijo, Satoki</creatorcontrib><creatorcontrib>Katayama, Naoyuki</creatorcontrib><creatorcontrib>Fujisaki, Junko</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Digestive endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikenoyama, Yohei</au><au>Hirasawa, Toshiaki</au><au>Ishioka, Mitsuaki</au><au>Namikawa, Ken</au><au>Yoshimizu, Shoichi</au><au>Horiuchi, Yusuke</au><au>Ishiyama, Akiyoshi</au><au>Yoshio, Toshiyuki</au><au>Tsuchida, Tomohiro</au><au>Takeuchi, Yoshinori</au><au>Shichijo, Satoki</au><au>Katayama, Naoyuki</au><au>Fujisaki, Junko</au><au>Tada, Tomohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</atitle><jtitle>Digestive endoscopy</jtitle><addtitle>Dig Endosc</addtitle><date>2021-01</date><risdate>2021</risdate><volume>33</volume><issue>1</issue><spage>141</spage><epage>150</epage><pages>141-150</pages><issn>0915-5635</issn><eissn>1443-1661</eissn><abstract>Objectives
Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists.
Methods
The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases).
Results
The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%).
Conclusion
The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.</abstract><cop>Australia</cop><pub>John Wiley and Sons Inc</pub><pmid>32282110</pmid><doi>10.1111/den.13688</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7853-4454</orcidid><orcidid>https://orcid.org/0000-0001-5035-3195</orcidid><orcidid>https://orcid.org/0000-0002-2936-4612</orcidid><orcidid>https://orcid.org/0000-0001-9821-0513</orcidid><orcidid>https://orcid.org/0000-0002-5750-0976</orcidid><orcidid>https://orcid.org/0000-0002-6450-1934</orcidid><orcidid>https://orcid.org/0000-0002-6546-0329</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0915-5635 |
ispartof | Digestive endoscopy, 2021-01, Vol.33 (1), p.141-150 |
issn | 0915-5635 1443-1661 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7818187 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | artificial intelligence convolutional neural network deep learning endoscopy gastric cancer Original |
title | Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20early%20gastric%20cancer:%20Comparison%20between%20the%20diagnostic%20ability%20of%20convolutional%20neural%20networks%20and%20endoscopists&rft.jtitle=Digestive%20endoscopy&rft.au=Ikenoyama,%20Yohei&rft.date=2021-01&rft.volume=33&rft.issue=1&rft.spage=141&rft.epage=150&rft.pages=141-150&rft.issn=0915-5635&rft.eissn=1443-1661&rft_id=info:doi/10.1111/den.13688&rft_dat=%3Cproquest_pubme%3E2389213577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389213577&rft_id=info:pmid/32282110&rfr_iscdi=true |