Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists

Objectives Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digestive endoscopy 2021-01, Vol.33 (1), p.141-150
Hauptverfasser: Ikenoyama, Yohei, Hirasawa, Toshiaki, Ishioka, Mitsuaki, Namikawa, Ken, Yoshimizu, Shoichi, Horiuchi, Yusuke, Ishiyama, Akiyoshi, Yoshio, Toshiyuki, Tsuchida, Tomohiro, Takeuchi, Yoshinori, Shichijo, Satoki, Katayama, Naoyuki, Fujisaki, Junko, Tada, Tomohiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 141
container_title Digestive endoscopy
container_volume 33
creator Ikenoyama, Yohei
Hirasawa, Toshiaki
Ishioka, Mitsuaki
Namikawa, Ken
Yoshimizu, Shoichi
Horiuchi, Yusuke
Ishiyama, Akiyoshi
Yoshio, Toshiyuki
Tsuchida, Tomohiro
Takeuchi, Yoshinori
Shichijo, Satoki
Katayama, Naoyuki
Fujisaki, Junko
Tada, Tomohiro
description Objectives Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists. Methods The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases). Results The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%). Conclusion The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.
doi_str_mv 10.1111/den.13688
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7818187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389213577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhwB9APsIhbcZOYi8HpGr7AVIFFzhbE2eyNWTtxXa6WvHncbulggMeyXOYR8-M9DL2GuoTKO90IH8CstP6CVtA08gKug6eskW9hLZqO9kesRcpfa9rEMumec6OpBBaANQL9uucMtns_JoTxmnP15hydJZb9Jbie74Kmy1Gl4LnPeUdkef5hvjgcO1DyoXE3k0u73kYuQ3-NkxzdsHjxD3N8b7lXYg_Ekc_cPJDSDZsXcrpJXs24pTo1UM_Zt8uL76uPlbXX64-rc6uK9vWra4aRcIK1XZDh0q3HQioB9lITaDFiEiIPSrorSa5LD8o28gRVWthUM3Yy2P24eDdzv2GBks-l7vMNroNxr0J6My_E-9uzDrcGqWhlCqCtw-CGH7OlLLZuGRpmtBTmJMRUi8FyFbdoe8OqI0hpUjj4xqozV1YpoRl7sMq7Ju_73ok_6RTgNMDsHMT7f9vMucXnw_K31uJoro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389213577</pqid></control><display><type>article</type><title>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ikenoyama, Yohei ; Hirasawa, Toshiaki ; Ishioka, Mitsuaki ; Namikawa, Ken ; Yoshimizu, Shoichi ; Horiuchi, Yusuke ; Ishiyama, Akiyoshi ; Yoshio, Toshiyuki ; Tsuchida, Tomohiro ; Takeuchi, Yoshinori ; Shichijo, Satoki ; Katayama, Naoyuki ; Fujisaki, Junko ; Tada, Tomohiro</creator><creatorcontrib>Ikenoyama, Yohei ; Hirasawa, Toshiaki ; Ishioka, Mitsuaki ; Namikawa, Ken ; Yoshimizu, Shoichi ; Horiuchi, Yusuke ; Ishiyama, Akiyoshi ; Yoshio, Toshiyuki ; Tsuchida, Tomohiro ; Takeuchi, Yoshinori ; Shichijo, Satoki ; Katayama, Naoyuki ; Fujisaki, Junko ; Tada, Tomohiro</creatorcontrib><description>Objectives Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists. Methods The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases). Results The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%). Conclusion The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.</description><identifier>ISSN: 0915-5635</identifier><identifier>EISSN: 1443-1661</identifier><identifier>DOI: 10.1111/den.13688</identifier><identifier>PMID: 32282110</identifier><language>eng</language><publisher>Australia: John Wiley and Sons Inc</publisher><subject>artificial intelligence ; convolutional neural network ; deep learning ; endoscopy ; gastric cancer ; Original</subject><ispartof>Digestive endoscopy, 2021-01, Vol.33 (1), p.141-150</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japan Gastroenterological Endoscopy Society.</rights><rights>2020 The Authors. Digestive Endoscopy published by John Wiley &amp; Sons Australia, Ltd on behalf of Japan Gastroenterological Endoscopy Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</citedby><cites>FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</cites><orcidid>0000-0002-7853-4454 ; 0000-0001-5035-3195 ; 0000-0002-2936-4612 ; 0000-0001-9821-0513 ; 0000-0002-5750-0976 ; 0000-0002-6450-1934 ; 0000-0002-6546-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fden.13688$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fden.13688$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32282110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikenoyama, Yohei</creatorcontrib><creatorcontrib>Hirasawa, Toshiaki</creatorcontrib><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Namikawa, Ken</creatorcontrib><creatorcontrib>Yoshimizu, Shoichi</creatorcontrib><creatorcontrib>Horiuchi, Yusuke</creatorcontrib><creatorcontrib>Ishiyama, Akiyoshi</creatorcontrib><creatorcontrib>Yoshio, Toshiyuki</creatorcontrib><creatorcontrib>Tsuchida, Tomohiro</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Shichijo, Satoki</creatorcontrib><creatorcontrib>Katayama, Naoyuki</creatorcontrib><creatorcontrib>Fujisaki, Junko</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><title>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</title><title>Digestive endoscopy</title><addtitle>Dig Endosc</addtitle><description>Objectives Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists. Methods The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases). Results The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%). Conclusion The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.</description><subject>artificial intelligence</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>endoscopy</subject><subject>gastric cancer</subject><subject>Original</subject><issn>0915-5635</issn><issn>1443-1661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1v1DAQhi0EokvhwB9APsIhbcZOYi8HpGr7AVIFFzhbE2eyNWTtxXa6WvHncbulggMeyXOYR8-M9DL2GuoTKO90IH8CstP6CVtA08gKug6eskW9hLZqO9kesRcpfa9rEMumec6OpBBaANQL9uucMtns_JoTxmnP15hydJZb9Jbie74Kmy1Gl4LnPeUdkef5hvjgcO1DyoXE3k0u73kYuQ3-NkxzdsHjxD3N8b7lXYg_Ekc_cPJDSDZsXcrpJXs24pTo1UM_Zt8uL76uPlbXX64-rc6uK9vWra4aRcIK1XZDh0q3HQioB9lITaDFiEiIPSrorSa5LD8o28gRVWthUM3Yy2P24eDdzv2GBks-l7vMNroNxr0J6My_E-9uzDrcGqWhlCqCtw-CGH7OlLLZuGRpmtBTmJMRUi8FyFbdoe8OqI0hpUjj4xqozV1YpoRl7sMq7Ju_73ok_6RTgNMDsHMT7f9vMucXnw_K31uJoro</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Ikenoyama, Yohei</creator><creator>Hirasawa, Toshiaki</creator><creator>Ishioka, Mitsuaki</creator><creator>Namikawa, Ken</creator><creator>Yoshimizu, Shoichi</creator><creator>Horiuchi, Yusuke</creator><creator>Ishiyama, Akiyoshi</creator><creator>Yoshio, Toshiyuki</creator><creator>Tsuchida, Tomohiro</creator><creator>Takeuchi, Yoshinori</creator><creator>Shichijo, Satoki</creator><creator>Katayama, Naoyuki</creator><creator>Fujisaki, Junko</creator><creator>Tada, Tomohiro</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7853-4454</orcidid><orcidid>https://orcid.org/0000-0001-5035-3195</orcidid><orcidid>https://orcid.org/0000-0002-2936-4612</orcidid><orcidid>https://orcid.org/0000-0001-9821-0513</orcidid><orcidid>https://orcid.org/0000-0002-5750-0976</orcidid><orcidid>https://orcid.org/0000-0002-6450-1934</orcidid><orcidid>https://orcid.org/0000-0002-6546-0329</orcidid></search><sort><creationdate>202101</creationdate><title>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</title><author>Ikenoyama, Yohei ; Hirasawa, Toshiaki ; Ishioka, Mitsuaki ; Namikawa, Ken ; Yoshimizu, Shoichi ; Horiuchi, Yusuke ; Ishiyama, Akiyoshi ; Yoshio, Toshiyuki ; Tsuchida, Tomohiro ; Takeuchi, Yoshinori ; Shichijo, Satoki ; Katayama, Naoyuki ; Fujisaki, Junko ; Tada, Tomohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-47e2c2756d6a78561210d3438e182faaeaaba71bc8e39bc817c43fa75c1d74fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>endoscopy</topic><topic>gastric cancer</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikenoyama, Yohei</creatorcontrib><creatorcontrib>Hirasawa, Toshiaki</creatorcontrib><creatorcontrib>Ishioka, Mitsuaki</creatorcontrib><creatorcontrib>Namikawa, Ken</creatorcontrib><creatorcontrib>Yoshimizu, Shoichi</creatorcontrib><creatorcontrib>Horiuchi, Yusuke</creatorcontrib><creatorcontrib>Ishiyama, Akiyoshi</creatorcontrib><creatorcontrib>Yoshio, Toshiyuki</creatorcontrib><creatorcontrib>Tsuchida, Tomohiro</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Shichijo, Satoki</creatorcontrib><creatorcontrib>Katayama, Naoyuki</creatorcontrib><creatorcontrib>Fujisaki, Junko</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Digestive endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikenoyama, Yohei</au><au>Hirasawa, Toshiaki</au><au>Ishioka, Mitsuaki</au><au>Namikawa, Ken</au><au>Yoshimizu, Shoichi</au><au>Horiuchi, Yusuke</au><au>Ishiyama, Akiyoshi</au><au>Yoshio, Toshiyuki</au><au>Tsuchida, Tomohiro</au><au>Takeuchi, Yoshinori</au><au>Shichijo, Satoki</au><au>Katayama, Naoyuki</au><au>Fujisaki, Junko</au><au>Tada, Tomohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists</atitle><jtitle>Digestive endoscopy</jtitle><addtitle>Dig Endosc</addtitle><date>2021-01</date><risdate>2021</risdate><volume>33</volume><issue>1</issue><spage>141</spage><epage>150</epage><pages>141-150</pages><issn>0915-5635</issn><eissn>1443-1661</eissn><abstract>Objectives Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists. Methods The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases). Results The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9–32.5%). Conclusion The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.</abstract><cop>Australia</cop><pub>John Wiley and Sons Inc</pub><pmid>32282110</pmid><doi>10.1111/den.13688</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7853-4454</orcidid><orcidid>https://orcid.org/0000-0001-5035-3195</orcidid><orcidid>https://orcid.org/0000-0002-2936-4612</orcidid><orcidid>https://orcid.org/0000-0001-9821-0513</orcidid><orcidid>https://orcid.org/0000-0002-5750-0976</orcidid><orcidid>https://orcid.org/0000-0002-6450-1934</orcidid><orcidid>https://orcid.org/0000-0002-6546-0329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-5635
ispartof Digestive endoscopy, 2021-01, Vol.33 (1), p.141-150
issn 0915-5635
1443-1661
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7818187
source Wiley Online Library Journals Frontfile Complete
subjects artificial intelligence
convolutional neural network
deep learning
endoscopy
gastric cancer
Original
title Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20early%20gastric%20cancer:%20Comparison%20between%20the%20diagnostic%20ability%20of%20convolutional%20neural%20networks%20and%20endoscopists&rft.jtitle=Digestive%20endoscopy&rft.au=Ikenoyama,%20Yohei&rft.date=2021-01&rft.volume=33&rft.issue=1&rft.spage=141&rft.epage=150&rft.pages=141-150&rft.issn=0915-5635&rft.eissn=1443-1661&rft_id=info:doi/10.1111/den.13688&rft_dat=%3Cproquest_pubme%3E2389213577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389213577&rft_id=info:pmid/32282110&rfr_iscdi=true