Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection
To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillu...
Gespeichert in:
Veröffentlicht in: | Cell reports. Medicine 2021-01, Vol.2 (1), p.100187-100187, Article 100187 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100187 |
---|---|
container_issue | 1 |
container_start_page | 100187 |
container_title | Cell reports. Medicine |
container_volume | 2 |
creator | Dijkman, Karin Aguilo, Nacho Boot, Charelle Hofman, Sam O. Sombroek, Claudia C. Vervenne, Richard A.W. Kocken, Clemens H.M. Marinova, Dessislava Thole, Jelle Rodríguez, Esteban Vierboom, Michel P.M. Haanstra, Krista G. Puentes, Eugenia Martin, Carlos Verreck, Frank A.W. |
description | To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.
[Display omitted]
Pulmonary MTBVAC delivery confers immune signature correlating with TB protectionThis signature spreads through the lung without a recall response in the skinVaccine-induced T cells have increased mucosal homing and tissue residency markersVaccine-induced antibodies enhance phagocytosis of M. tuberculosis
Dijkman et al. show that pulmonary immunization with the M. tuberculosis-derived vaccine candidate MTBVAC confers a local mucosal antigen-specific signature—polyfunctional Th1/Th17 cells exhibiting increased homing and tissue residency marker expression, IL-10, and phagocytosis-promoting immunoglobulins—that has been associated previously with protection from TB infection and disease in rhesus macaques. |
doi_str_mv | 10.1016/j.xcrm.2020.100187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7817873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666379120302421</els_id><sourcerecordid>2484155683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-770b680d4538a6fa1247159c9577ede58d03696f974a503650d605b3137d1d4b3</originalsourceid><addsrcrecordid>eNp9UUtv1DAQthAVrUr_AAeUI5fd2nH8iISQygoKUlF7aLlajj1pvUrsxY5T-u9xuqUqF04ezffwzHwIvSN4TTDhp9v1bxPHdY3rpYGJFK_QUc05X1HRktcv6kN0ktIWY1wzQiTFb9AhpawmApMjNF_lYQxex4fqx_Xnn2ebatbGOK8nF3zlvM0GUuXGMXuokrstQI6ls4swu5DT8FCZECMMegJb3bvp7hEC_6gPfTXlDqLJQ0iu-PgezIK8RQe9HhKcPL3H6Obrl-vNt9XF5fn3zdnFyjSMTSshcMcltg2jUvNek7oRhLWmZUKABSYtprzlfSsazUrJsOWYdZRQYYltOnqMPu19d7kbwZoyV9SD2kU3lpVV0E79i3h3p27DrIQkQgpaDD48GcTwK0Oa1OiSgWHQHsr6qm5kQxjjcqHWe6qJIaUI_fM3BKslM7VVS2ZqyUztMyui9y8HfJb8TagQPu4JUM40O4gqGQfegHWx3FLZ4P7n_weOBqrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484155683</pqid></control><display><type>article</type><title>Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dijkman, Karin ; Aguilo, Nacho ; Boot, Charelle ; Hofman, Sam O. ; Sombroek, Claudia C. ; Vervenne, Richard A.W. ; Kocken, Clemens H.M. ; Marinova, Dessislava ; Thole, Jelle ; Rodríguez, Esteban ; Vierboom, Michel P.M. ; Haanstra, Krista G. ; Puentes, Eugenia ; Martin, Carlos ; Verreck, Frank A.W.</creator><creatorcontrib>Dijkman, Karin ; Aguilo, Nacho ; Boot, Charelle ; Hofman, Sam O. ; Sombroek, Claudia C. ; Vervenne, Richard A.W. ; Kocken, Clemens H.M. ; Marinova, Dessislava ; Thole, Jelle ; Rodríguez, Esteban ; Vierboom, Michel P.M. ; Haanstra, Krista G. ; Puentes, Eugenia ; Martin, Carlos ; Verreck, Frank A.W.</creatorcontrib><description>To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.
[Display omitted]
Pulmonary MTBVAC delivery confers immune signature correlating with TB protectionThis signature spreads through the lung without a recall response in the skinVaccine-induced T cells have increased mucosal homing and tissue residency markersVaccine-induced antibodies enhance phagocytosis of M. tuberculosis
Dijkman et al. show that pulmonary immunization with the M. tuberculosis-derived vaccine candidate MTBVAC confers a local mucosal antigen-specific signature—polyfunctional Th1/Th17 cells exhibiting increased homing and tissue residency marker expression, IL-10, and phagocytosis-promoting immunoglobulins—that has been associated previously with protection from TB infection and disease in rhesus macaques.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2020.100187</identifier><identifier>PMID: 33521701</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Administration, Intranasal ; Animals ; antibodies ; BCG ; BCG Vaccine - administration & dosage ; Cellular Reprogramming - genetics ; Cellular Reprogramming - immunology ; Female ; Gene Expression Regulation ; immune correlates ; Immunity, Mucosal ; Injections, Intradermal ; Interleukin-10 - genetics ; Interleukin-10 - immunology ; Interleukin-17 - genetics ; Interleukin-17 - immunology ; Lung - drug effects ; Lung - immunology ; Lung - microbiology ; Macaca mulatta ; Male ; Monocytes - drug effects ; Monocytes - immunology ; Monocytes - microbiology ; MTBVAC ; mucosal immunity ; Mycobacterium tuberculosis - immunology ; Mycobacterium tuberculosis - pathogenicity ; non-human primate ; Respiratory Mucosa - immunology ; Respiratory Mucosa - microbiology ; Th1 Cells - immunology ; Th1 Cells - microbiology ; Th1/Th17 ; Th17 Cells - immunology ; Th17 Cells - microbiology ; tissue-resident memory ; tuberculosis ; Tuberculosis Vaccines - administration & dosage ; Tuberculosis, Pulmonary - genetics ; Tuberculosis, Pulmonary - immunology ; Tuberculosis, Pulmonary - microbiology ; Tuberculosis, Pulmonary - prevention & control ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - immunology ; vaccination</subject><ispartof>Cell reports. Medicine, 2021-01, Vol.2 (1), p.100187-100187, Article 100187</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s).</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-770b680d4538a6fa1247159c9577ede58d03696f974a503650d605b3137d1d4b3</citedby><cites>FETCH-LOGICAL-c455t-770b680d4538a6fa1247159c9577ede58d03696f974a503650d605b3137d1d4b3</cites><orcidid>0000-0002-0174-1375 ; 0000-0002-4441-5000 ; 0000-0002-4784-1734 ; 0000-0002-5395-505X ; 0000-0003-2993-5478 ; 0000-0001-7897-9173 ; 0000-0002-7728-6030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817873/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817873/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33521701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dijkman, Karin</creatorcontrib><creatorcontrib>Aguilo, Nacho</creatorcontrib><creatorcontrib>Boot, Charelle</creatorcontrib><creatorcontrib>Hofman, Sam O.</creatorcontrib><creatorcontrib>Sombroek, Claudia C.</creatorcontrib><creatorcontrib>Vervenne, Richard A.W.</creatorcontrib><creatorcontrib>Kocken, Clemens H.M.</creatorcontrib><creatorcontrib>Marinova, Dessislava</creatorcontrib><creatorcontrib>Thole, Jelle</creatorcontrib><creatorcontrib>Rodríguez, Esteban</creatorcontrib><creatorcontrib>Vierboom, Michel P.M.</creatorcontrib><creatorcontrib>Haanstra, Krista G.</creatorcontrib><creatorcontrib>Puentes, Eugenia</creatorcontrib><creatorcontrib>Martin, Carlos</creatorcontrib><creatorcontrib>Verreck, Frank A.W.</creatorcontrib><title>Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.
[Display omitted]
Pulmonary MTBVAC delivery confers immune signature correlating with TB protectionThis signature spreads through the lung without a recall response in the skinVaccine-induced T cells have increased mucosal homing and tissue residency markersVaccine-induced antibodies enhance phagocytosis of M. tuberculosis
Dijkman et al. show that pulmonary immunization with the M. tuberculosis-derived vaccine candidate MTBVAC confers a local mucosal antigen-specific signature—polyfunctional Th1/Th17 cells exhibiting increased homing and tissue residency marker expression, IL-10, and phagocytosis-promoting immunoglobulins—that has been associated previously with protection from TB infection and disease in rhesus macaques.</description><subject>Administration, Intranasal</subject><subject>Animals</subject><subject>antibodies</subject><subject>BCG</subject><subject>BCG Vaccine - administration & dosage</subject><subject>Cellular Reprogramming - genetics</subject><subject>Cellular Reprogramming - immunology</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>immune correlates</subject><subject>Immunity, Mucosal</subject><subject>Injections, Intradermal</subject><subject>Interleukin-10 - genetics</subject><subject>Interleukin-10 - immunology</subject><subject>Interleukin-17 - genetics</subject><subject>Interleukin-17 - immunology</subject><subject>Lung - drug effects</subject><subject>Lung - immunology</subject><subject>Lung - microbiology</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Monocytes - microbiology</subject><subject>MTBVAC</subject><subject>mucosal immunity</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>non-human primate</subject><subject>Respiratory Mucosa - immunology</subject><subject>Respiratory Mucosa - microbiology</subject><subject>Th1 Cells - immunology</subject><subject>Th1 Cells - microbiology</subject><subject>Th1/Th17</subject><subject>Th17 Cells - immunology</subject><subject>Th17 Cells - microbiology</subject><subject>tissue-resident memory</subject><subject>tuberculosis</subject><subject>Tuberculosis Vaccines - administration & dosage</subject><subject>Tuberculosis, Pulmonary - genetics</subject><subject>Tuberculosis, Pulmonary - immunology</subject><subject>Tuberculosis, Pulmonary - microbiology</subject><subject>Tuberculosis, Pulmonary - prevention & control</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><subject>vaccination</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UUtv1DAQthAVrUr_AAeUI5fd2nH8iISQygoKUlF7aLlajj1pvUrsxY5T-u9xuqUqF04ezffwzHwIvSN4TTDhp9v1bxPHdY3rpYGJFK_QUc05X1HRktcv6kN0ktIWY1wzQiTFb9AhpawmApMjNF_lYQxex4fqx_Xnn2ebatbGOK8nF3zlvM0GUuXGMXuokrstQI6ls4swu5DT8FCZECMMegJb3bvp7hEC_6gPfTXlDqLJQ0iu-PgezIK8RQe9HhKcPL3H6Obrl-vNt9XF5fn3zdnFyjSMTSshcMcltg2jUvNek7oRhLWmZUKABSYtprzlfSsazUrJsOWYdZRQYYltOnqMPu19d7kbwZoyV9SD2kU3lpVV0E79i3h3p27DrIQkQgpaDD48GcTwK0Oa1OiSgWHQHsr6qm5kQxjjcqHWe6qJIaUI_fM3BKslM7VVS2ZqyUztMyui9y8HfJb8TagQPu4JUM40O4gqGQfegHWx3FLZ4P7n_weOBqrw</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Dijkman, Karin</creator><creator>Aguilo, Nacho</creator><creator>Boot, Charelle</creator><creator>Hofman, Sam O.</creator><creator>Sombroek, Claudia C.</creator><creator>Vervenne, Richard A.W.</creator><creator>Kocken, Clemens H.M.</creator><creator>Marinova, Dessislava</creator><creator>Thole, Jelle</creator><creator>Rodríguez, Esteban</creator><creator>Vierboom, Michel P.M.</creator><creator>Haanstra, Krista G.</creator><creator>Puentes, Eugenia</creator><creator>Martin, Carlos</creator><creator>Verreck, Frank A.W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0174-1375</orcidid><orcidid>https://orcid.org/0000-0002-4441-5000</orcidid><orcidid>https://orcid.org/0000-0002-4784-1734</orcidid><orcidid>https://orcid.org/0000-0002-5395-505X</orcidid><orcidid>https://orcid.org/0000-0003-2993-5478</orcidid><orcidid>https://orcid.org/0000-0001-7897-9173</orcidid><orcidid>https://orcid.org/0000-0002-7728-6030</orcidid></search><sort><creationdate>20210119</creationdate><title>Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection</title><author>Dijkman, Karin ; Aguilo, Nacho ; Boot, Charelle ; Hofman, Sam O. ; Sombroek, Claudia C. ; Vervenne, Richard A.W. ; Kocken, Clemens H.M. ; Marinova, Dessislava ; Thole, Jelle ; Rodríguez, Esteban ; Vierboom, Michel P.M. ; Haanstra, Krista G. ; Puentes, Eugenia ; Martin, Carlos ; Verreck, Frank A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-770b680d4538a6fa1247159c9577ede58d03696f974a503650d605b3137d1d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Administration, Intranasal</topic><topic>Animals</topic><topic>antibodies</topic><topic>BCG</topic><topic>BCG Vaccine - administration & dosage</topic><topic>Cellular Reprogramming - genetics</topic><topic>Cellular Reprogramming - immunology</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>immune correlates</topic><topic>Immunity, Mucosal</topic><topic>Injections, Intradermal</topic><topic>Interleukin-10 - genetics</topic><topic>Interleukin-10 - immunology</topic><topic>Interleukin-17 - genetics</topic><topic>Interleukin-17 - immunology</topic><topic>Lung - drug effects</topic><topic>Lung - immunology</topic><topic>Lung - microbiology</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Monocytes - microbiology</topic><topic>MTBVAC</topic><topic>mucosal immunity</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>non-human primate</topic><topic>Respiratory Mucosa - immunology</topic><topic>Respiratory Mucosa - microbiology</topic><topic>Th1 Cells - immunology</topic><topic>Th1 Cells - microbiology</topic><topic>Th1/Th17</topic><topic>Th17 Cells - immunology</topic><topic>Th17 Cells - microbiology</topic><topic>tissue-resident memory</topic><topic>tuberculosis</topic><topic>Tuberculosis Vaccines - administration & dosage</topic><topic>Tuberculosis, Pulmonary - genetics</topic><topic>Tuberculosis, Pulmonary - immunology</topic><topic>Tuberculosis, Pulmonary - microbiology</topic><topic>Tuberculosis, Pulmonary - prevention & control</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><topic>vaccination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dijkman, Karin</creatorcontrib><creatorcontrib>Aguilo, Nacho</creatorcontrib><creatorcontrib>Boot, Charelle</creatorcontrib><creatorcontrib>Hofman, Sam O.</creatorcontrib><creatorcontrib>Sombroek, Claudia C.</creatorcontrib><creatorcontrib>Vervenne, Richard A.W.</creatorcontrib><creatorcontrib>Kocken, Clemens H.M.</creatorcontrib><creatorcontrib>Marinova, Dessislava</creatorcontrib><creatorcontrib>Thole, Jelle</creatorcontrib><creatorcontrib>Rodríguez, Esteban</creatorcontrib><creatorcontrib>Vierboom, Michel P.M.</creatorcontrib><creatorcontrib>Haanstra, Krista G.</creatorcontrib><creatorcontrib>Puentes, Eugenia</creatorcontrib><creatorcontrib>Martin, Carlos</creatorcontrib><creatorcontrib>Verreck, Frank A.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dijkman, Karin</au><au>Aguilo, Nacho</au><au>Boot, Charelle</au><au>Hofman, Sam O.</au><au>Sombroek, Claudia C.</au><au>Vervenne, Richard A.W.</au><au>Kocken, Clemens H.M.</au><au>Marinova, Dessislava</au><au>Thole, Jelle</au><au>Rodríguez, Esteban</au><au>Vierboom, Michel P.M.</au><au>Haanstra, Krista G.</au><au>Puentes, Eugenia</au><au>Martin, Carlos</au><au>Verreck, Frank A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>2</volume><issue>1</issue><spage>100187</spage><epage>100187</epage><pages>100187-100187</pages><artnum>100187</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.
[Display omitted]
Pulmonary MTBVAC delivery confers immune signature correlating with TB protectionThis signature spreads through the lung without a recall response in the skinVaccine-induced T cells have increased mucosal homing and tissue residency markersVaccine-induced antibodies enhance phagocytosis of M. tuberculosis
Dijkman et al. show that pulmonary immunization with the M. tuberculosis-derived vaccine candidate MTBVAC confers a local mucosal antigen-specific signature—polyfunctional Th1/Th17 cells exhibiting increased homing and tissue residency marker expression, IL-10, and phagocytosis-promoting immunoglobulins—that has been associated previously with protection from TB infection and disease in rhesus macaques.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33521701</pmid><doi>10.1016/j.xcrm.2020.100187</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0174-1375</orcidid><orcidid>https://orcid.org/0000-0002-4441-5000</orcidid><orcidid>https://orcid.org/0000-0002-4784-1734</orcidid><orcidid>https://orcid.org/0000-0002-5395-505X</orcidid><orcidid>https://orcid.org/0000-0003-2993-5478</orcidid><orcidid>https://orcid.org/0000-0001-7897-9173</orcidid><orcidid>https://orcid.org/0000-0002-7728-6030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-3791 |
ispartof | Cell reports. Medicine, 2021-01, Vol.2 (1), p.100187-100187, Article 100187 |
issn | 2666-3791 2666-3791 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7817873 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Administration, Intranasal Animals antibodies BCG BCG Vaccine - administration & dosage Cellular Reprogramming - genetics Cellular Reprogramming - immunology Female Gene Expression Regulation immune correlates Immunity, Mucosal Injections, Intradermal Interleukin-10 - genetics Interleukin-10 - immunology Interleukin-17 - genetics Interleukin-17 - immunology Lung - drug effects Lung - immunology Lung - microbiology Macaca mulatta Male Monocytes - drug effects Monocytes - immunology Monocytes - microbiology MTBVAC mucosal immunity Mycobacterium tuberculosis - immunology Mycobacterium tuberculosis - pathogenicity non-human primate Respiratory Mucosa - immunology Respiratory Mucosa - microbiology Th1 Cells - immunology Th1 Cells - microbiology Th1/Th17 Th17 Cells - immunology Th17 Cells - microbiology tissue-resident memory tuberculosis Tuberculosis Vaccines - administration & dosage Tuberculosis, Pulmonary - genetics Tuberculosis, Pulmonary - immunology Tuberculosis, Pulmonary - microbiology Tuberculosis, Pulmonary - prevention & control Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - immunology vaccination |
title | Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20MTBVAC%20vaccination%20induces%20immune%20signatures%20previously%20correlated%20with%20prevention%20of%20tuberculosis%20infection&rft.jtitle=Cell%20reports.%20Medicine&rft.au=Dijkman,%20Karin&rft.date=2021-01-19&rft.volume=2&rft.issue=1&rft.spage=100187&rft.epage=100187&rft.pages=100187-100187&rft.artnum=100187&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2020.100187&rft_dat=%3Cproquest_pubme%3E2484155683%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484155683&rft_id=info:pmid/33521701&rft_els_id=S2666379120302421&rfr_iscdi=true |