JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps

Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2021-02, Vol.42 (3), p.555-566
Hauptverfasser: Dukart, Juergen, Holiga, Stefan, Rullmann, Michael, Lanzenberger, Rupert, Hawkins, Peter C. T., Mehta, Mitul A., Hesse, Swen, Barthel, Henryk, Sabri, Osama, Jech, Robert, Eickhoff, Simon B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 3
container_start_page 555
container_title Human brain mapping
container_volume 42
creator Dukart, Juergen
Holiga, Stefan
Rullmann, Michael
Lanzenberger, Rupert
Hawkins, Peter C. T.
Mehta, Mitul A.
Hesse, Swen
Barthel, Henryk
Sabri, Osama
Jech, Robert
Eickhoff, Simon B.
description Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information. Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.
doi_str_mv 10.1002/hbm.25244
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7814756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710623736</galeid><sourcerecordid>A710623736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEoh9w4AWQJS70kK0_1wkHpKUCCiriQO_WxJnsukrsxU5a7Qvw3DhsaSkC-WBr5jf_Gc9MUbxgdMEo5aebZlhwxaV8VBwyWuuSslo8nt9LVdZSs4PiKKUrShlTlD0tDoSgupZKHBY_Pk_ftmDxDVmRMYSedCGStIXRQU9siBH7_A6egId-lzCR0JEB1h5HZ0nEFDx4i8Rlm_Nr0sII5MaNG-In2yPEew9Gd40t8TjFMEbwaXDjiDGrbdOz4kkHfcLnt_dxcfnh_eXZeXnx9eOns9VFaRWjspRStICgFaeKa2CtUhU00GjBqmWF9VJWWummtqzhnLccQfIl8q6tuADGxHHxdi-7nZoBW4s-F9KbbcxFxp0J4MxDj3cbsw7XRldMarXMAq9vBWL4PmEazeCSxb4Hj2FKhss8hrpSdZ3RV3-hV2GKuYszpXOdVc3EPbWGHo3z3dwaO4ualc7z40KLOe3iH1Q-LQ7OBo-dy_YHASf7ABtDShG7uz8yauadMXlnzK-dyezLP5tyR_5ekgyc7oGbnGX3fyVz_u7LXvInoZzL6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478758913</pqid></control><display><type>article</type><title>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</title><source>MEDLINE</source><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dukart, Juergen ; Holiga, Stefan ; Rullmann, Michael ; Lanzenberger, Rupert ; Hawkins, Peter C. T. ; Mehta, Mitul A. ; Hesse, Swen ; Barthel, Henryk ; Sabri, Osama ; Jech, Robert ; Eickhoff, Simon B.</creator><creatorcontrib>Dukart, Juergen ; Holiga, Stefan ; Rullmann, Michael ; Lanzenberger, Rupert ; Hawkins, Peter C. T. ; Mehta, Mitul A. ; Hesse, Swen ; Barthel, Henryk ; Sabri, Osama ; Jech, Robert ; Eickhoff, Simon B.</creatorcontrib><description>Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information. Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25244</identifier><identifier>PMID: 33079453</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Blood flow ; Brain mapping ; Cerebral blood flow ; Cerebrovascular Circulation - drug effects ; Correlation analysis ; Dopamine D2 receptors ; Flumazenil ; GABA ; Humans ; Magnetic Resonance Imaging ; Medical imaging ; Movement disorders ; Neurodegeneration ; Neurodegenerative diseases ; Neuroimaging ; Neuroimaging - methods ; neuropharmacology ; Neurophysiology ; Neurotransmission ; Neurotransmitter Agents - pharmacology ; Neurotransmitters ; Norepinephrine ; Parkinson Disease - diagnostic imaging ; Parkinson Disease - metabolism ; Parkinson's disease ; Positron-Emission Tomography ; Receptors, Neurotransmitter - drug effects ; Resonance ; Risperidone ; Serotonin ; Spatial analysis ; Synaptic Transmission - physiology ; Tomography, Emission-Computed, Single-Photon ; γ-Aminobutyric acid</subject><ispartof>Human brain mapping, 2021-02, Vol.42 (3), p.555-566</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</citedby><cites>FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</cites><orcidid>0000-0003-4641-9539 ; 0000-0003-0492-5644 ; 0000-0002-2256-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33079453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dukart, Juergen</creatorcontrib><creatorcontrib>Holiga, Stefan</creatorcontrib><creatorcontrib>Rullmann, Michael</creatorcontrib><creatorcontrib>Lanzenberger, Rupert</creatorcontrib><creatorcontrib>Hawkins, Peter C. T.</creatorcontrib><creatorcontrib>Mehta, Mitul A.</creatorcontrib><creatorcontrib>Hesse, Swen</creatorcontrib><creatorcontrib>Barthel, Henryk</creatorcontrib><creatorcontrib>Sabri, Osama</creatorcontrib><creatorcontrib>Jech, Robert</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><title>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information. Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.</description><subject>Blood flow</subject><subject>Brain mapping</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - drug effects</subject><subject>Correlation analysis</subject><subject>Dopamine D2 receptors</subject><subject>Flumazenil</subject><subject>GABA</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Movement disorders</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>neuropharmacology</subject><subject>Neurophysiology</subject><subject>Neurotransmission</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>Neurotransmitters</subject><subject>Norepinephrine</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson's disease</subject><subject>Positron-Emission Tomography</subject><subject>Receptors, Neurotransmitter - drug effects</subject><subject>Resonance</subject><subject>Risperidone</subject><subject>Serotonin</subject><subject>Spatial analysis</subject><subject>Synaptic Transmission - physiology</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><subject>γ-Aminobutyric acid</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1ks1u1DAQxyMEoh9w4AWQJS70kK0_1wkHpKUCCiriQO_WxJnsukrsxU5a7Qvw3DhsaSkC-WBr5jf_Gc9MUbxgdMEo5aebZlhwxaV8VBwyWuuSslo8nt9LVdZSs4PiKKUrShlTlD0tDoSgupZKHBY_Pk_ftmDxDVmRMYSedCGStIXRQU9siBH7_A6egId-lzCR0JEB1h5HZ0nEFDx4i8Rlm_Nr0sII5MaNG-In2yPEew9Gd40t8TjFMEbwaXDjiDGrbdOz4kkHfcLnt_dxcfnh_eXZeXnx9eOns9VFaRWjspRStICgFaeKa2CtUhU00GjBqmWF9VJWWummtqzhnLccQfIl8q6tuADGxHHxdi-7nZoBW4s-F9KbbcxFxp0J4MxDj3cbsw7XRldMarXMAq9vBWL4PmEazeCSxb4Hj2FKhss8hrpSdZ3RV3-hV2GKuYszpXOdVc3EPbWGHo3z3dwaO4ualc7z40KLOe3iH1Q-LQ7OBo-dy_YHASf7ABtDShG7uz8yauadMXlnzK-dyezLP5tyR_5ekgyc7oGbnGX3fyVz_u7LXvInoZzL6Q</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Dukart, Juergen</creator><creator>Holiga, Stefan</creator><creator>Rullmann, Michael</creator><creator>Lanzenberger, Rupert</creator><creator>Hawkins, Peter C. T.</creator><creator>Mehta, Mitul A.</creator><creator>Hesse, Swen</creator><creator>Barthel, Henryk</creator><creator>Sabri, Osama</creator><creator>Jech, Robert</creator><creator>Eickhoff, Simon B.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4641-9539</orcidid><orcidid>https://orcid.org/0000-0003-0492-5644</orcidid><orcidid>https://orcid.org/0000-0002-2256-1648</orcidid></search><sort><creationdate>20210215</creationdate><title>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</title><author>Dukart, Juergen ; Holiga, Stefan ; Rullmann, Michael ; Lanzenberger, Rupert ; Hawkins, Peter C. T. ; Mehta, Mitul A. ; Hesse, Swen ; Barthel, Henryk ; Sabri, Osama ; Jech, Robert ; Eickhoff, Simon B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood flow</topic><topic>Brain mapping</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - drug effects</topic><topic>Correlation analysis</topic><topic>Dopamine D2 receptors</topic><topic>Flumazenil</topic><topic>GABA</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Movement disorders</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>neuropharmacology</topic><topic>Neurophysiology</topic><topic>Neurotransmission</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>Neurotransmitters</topic><topic>Norepinephrine</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson's disease</topic><topic>Positron-Emission Tomography</topic><topic>Receptors, Neurotransmitter - drug effects</topic><topic>Resonance</topic><topic>Risperidone</topic><topic>Serotonin</topic><topic>Spatial analysis</topic><topic>Synaptic Transmission - physiology</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dukart, Juergen</creatorcontrib><creatorcontrib>Holiga, Stefan</creatorcontrib><creatorcontrib>Rullmann, Michael</creatorcontrib><creatorcontrib>Lanzenberger, Rupert</creatorcontrib><creatorcontrib>Hawkins, Peter C. T.</creatorcontrib><creatorcontrib>Mehta, Mitul A.</creatorcontrib><creatorcontrib>Hesse, Swen</creatorcontrib><creatorcontrib>Barthel, Henryk</creatorcontrib><creatorcontrib>Sabri, Osama</creatorcontrib><creatorcontrib>Jech, Robert</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dukart, Juergen</au><au>Holiga, Stefan</au><au>Rullmann, Michael</au><au>Lanzenberger, Rupert</au><au>Hawkins, Peter C. T.</au><au>Mehta, Mitul A.</au><au>Hesse, Swen</au><au>Barthel, Henryk</au><au>Sabri, Osama</au><au>Jech, Robert</au><au>Eickhoff, Simon B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>42</volume><issue>3</issue><spage>555</spage><epage>566</epage><pages>555-566</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information. Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33079453</pmid><doi>10.1002/hbm.25244</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4641-9539</orcidid><orcidid>https://orcid.org/0000-0003-0492-5644</orcidid><orcidid>https://orcid.org/0000-0002-2256-1648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2021-02, Vol.42 (3), p.555-566
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7814756
source MEDLINE; Wiley Journals; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Blood flow
Brain mapping
Cerebral blood flow
Cerebrovascular Circulation - drug effects
Correlation analysis
Dopamine D2 receptors
Flumazenil
GABA
Humans
Magnetic Resonance Imaging
Medical imaging
Movement disorders
Neurodegeneration
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
neuropharmacology
Neurophysiology
Neurotransmission
Neurotransmitter Agents - pharmacology
Neurotransmitters
Norepinephrine
Parkinson Disease - diagnostic imaging
Parkinson Disease - metabolism
Parkinson's disease
Positron-Emission Tomography
Receptors, Neurotransmitter - drug effects
Resonance
Risperidone
Serotonin
Spatial analysis
Synaptic Transmission - physiology
Tomography, Emission-Computed, Single-Photon
γ-Aminobutyric acid
title JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JuSpace:%20A%20tool%20for%20spatial%20correlation%20analyses%20of%20magnetic%20resonance%20imaging%20data%20with%20nuclear%20imaging%20derived%20neurotransmitter%20maps&rft.jtitle=Human%20brain%20mapping&rft.au=Dukart,%20Juergen&rft.date=2021-02-15&rft.volume=42&rft.issue=3&rft.spage=555&rft.epage=566&rft.pages=555-566&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25244&rft_dat=%3Cgale_pubme%3EA710623736%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478758913&rft_id=info:pmid/33079453&rft_galeid=A710623736&rfr_iscdi=true