JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps
Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2021-02, Vol.42 (3), p.555-566 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | 3 |
container_start_page | 555 |
container_title | Human brain mapping |
container_volume | 42 |
creator | Dukart, Juergen Holiga, Stefan Rullmann, Michael Lanzenberger, Rupert Hawkins, Peter C. T. Mehta, Mitul A. Hesse, Swen Barthel, Henryk Sabri, Osama Jech, Robert Eickhoff, Simon B. |
description | Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.
Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information. |
doi_str_mv | 10.1002/hbm.25244 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7814756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710623736</galeid><sourcerecordid>A710623736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyMEoh9w4AWQJS70kK0_1wkHpKUCCiriQO_WxJnsukrsxU5a7Qvw3DhsaSkC-WBr5jf_Gc9MUbxgdMEo5aebZlhwxaV8VBwyWuuSslo8nt9LVdZSs4PiKKUrShlTlD0tDoSgupZKHBY_Pk_ftmDxDVmRMYSedCGStIXRQU9siBH7_A6egId-lzCR0JEB1h5HZ0nEFDx4i8Rlm_Nr0sII5MaNG-In2yPEew9Gd40t8TjFMEbwaXDjiDGrbdOz4kkHfcLnt_dxcfnh_eXZeXnx9eOns9VFaRWjspRStICgFaeKa2CtUhU00GjBqmWF9VJWWummtqzhnLccQfIl8q6tuADGxHHxdi-7nZoBW4s-F9KbbcxFxp0J4MxDj3cbsw7XRldMarXMAq9vBWL4PmEazeCSxb4Hj2FKhss8hrpSdZ3RV3-hV2GKuYszpXOdVc3EPbWGHo3z3dwaO4ualc7z40KLOe3iH1Q-LQ7OBo-dy_YHASf7ABtDShG7uz8yauadMXlnzK-dyezLP5tyR_5ekgyc7oGbnGX3fyVz_u7LXvInoZzL6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478758913</pqid></control><display><type>article</type><title>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</title><source>MEDLINE</source><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dukart, Juergen ; Holiga, Stefan ; Rullmann, Michael ; Lanzenberger, Rupert ; Hawkins, Peter C. T. ; Mehta, Mitul A. ; Hesse, Swen ; Barthel, Henryk ; Sabri, Osama ; Jech, Robert ; Eickhoff, Simon B.</creator><creatorcontrib>Dukart, Juergen ; Holiga, Stefan ; Rullmann, Michael ; Lanzenberger, Rupert ; Hawkins, Peter C. T. ; Mehta, Mitul A. ; Hesse, Swen ; Barthel, Henryk ; Sabri, Osama ; Jech, Robert ; Eickhoff, Simon B.</creatorcontrib><description>Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.
Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25244</identifier><identifier>PMID: 33079453</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Blood flow ; Brain mapping ; Cerebral blood flow ; Cerebrovascular Circulation - drug effects ; Correlation analysis ; Dopamine D2 receptors ; Flumazenil ; GABA ; Humans ; Magnetic Resonance Imaging ; Medical imaging ; Movement disorders ; Neurodegeneration ; Neurodegenerative diseases ; Neuroimaging ; Neuroimaging - methods ; neuropharmacology ; Neurophysiology ; Neurotransmission ; Neurotransmitter Agents - pharmacology ; Neurotransmitters ; Norepinephrine ; Parkinson Disease - diagnostic imaging ; Parkinson Disease - metabolism ; Parkinson's disease ; Positron-Emission Tomography ; Receptors, Neurotransmitter - drug effects ; Resonance ; Risperidone ; Serotonin ; Spatial analysis ; Synaptic Transmission - physiology ; Tomography, Emission-Computed, Single-Photon ; γ-Aminobutyric acid</subject><ispartof>Human brain mapping, 2021-02, Vol.42 (3), p.555-566</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</citedby><cites>FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</cites><orcidid>0000-0003-4641-9539 ; 0000-0003-0492-5644 ; 0000-0002-2256-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33079453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dukart, Juergen</creatorcontrib><creatorcontrib>Holiga, Stefan</creatorcontrib><creatorcontrib>Rullmann, Michael</creatorcontrib><creatorcontrib>Lanzenberger, Rupert</creatorcontrib><creatorcontrib>Hawkins, Peter C. T.</creatorcontrib><creatorcontrib>Mehta, Mitul A.</creatorcontrib><creatorcontrib>Hesse, Swen</creatorcontrib><creatorcontrib>Barthel, Henryk</creatorcontrib><creatorcontrib>Sabri, Osama</creatorcontrib><creatorcontrib>Jech, Robert</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><title>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.
Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.</description><subject>Blood flow</subject><subject>Brain mapping</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - drug effects</subject><subject>Correlation analysis</subject><subject>Dopamine D2 receptors</subject><subject>Flumazenil</subject><subject>GABA</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Movement disorders</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>neuropharmacology</subject><subject>Neurophysiology</subject><subject>Neurotransmission</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>Neurotransmitters</subject><subject>Norepinephrine</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson's disease</subject><subject>Positron-Emission Tomography</subject><subject>Receptors, Neurotransmitter - drug effects</subject><subject>Resonance</subject><subject>Risperidone</subject><subject>Serotonin</subject><subject>Spatial analysis</subject><subject>Synaptic Transmission - physiology</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><subject>γ-Aminobutyric acid</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1ks1u1DAQxyMEoh9w4AWQJS70kK0_1wkHpKUCCiriQO_WxJnsukrsxU5a7Qvw3DhsaSkC-WBr5jf_Gc9MUbxgdMEo5aebZlhwxaV8VBwyWuuSslo8nt9LVdZSs4PiKKUrShlTlD0tDoSgupZKHBY_Pk_ftmDxDVmRMYSedCGStIXRQU9siBH7_A6egId-lzCR0JEB1h5HZ0nEFDx4i8Rlm_Nr0sII5MaNG-In2yPEew9Gd40t8TjFMEbwaXDjiDGrbdOz4kkHfcLnt_dxcfnh_eXZeXnx9eOns9VFaRWjspRStICgFaeKa2CtUhU00GjBqmWF9VJWWummtqzhnLccQfIl8q6tuADGxHHxdi-7nZoBW4s-F9KbbcxFxp0J4MxDj3cbsw7XRldMarXMAq9vBWL4PmEazeCSxb4Hj2FKhss8hrpSdZ3RV3-hV2GKuYszpXOdVc3EPbWGHo3z3dwaO4ualc7z40KLOe3iH1Q-LQ7OBo-dy_YHASf7ABtDShG7uz8yauadMXlnzK-dyezLP5tyR_5ekgyc7oGbnGX3fyVz_u7LXvInoZzL6Q</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Dukart, Juergen</creator><creator>Holiga, Stefan</creator><creator>Rullmann, Michael</creator><creator>Lanzenberger, Rupert</creator><creator>Hawkins, Peter C. T.</creator><creator>Mehta, Mitul A.</creator><creator>Hesse, Swen</creator><creator>Barthel, Henryk</creator><creator>Sabri, Osama</creator><creator>Jech, Robert</creator><creator>Eickhoff, Simon B.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4641-9539</orcidid><orcidid>https://orcid.org/0000-0003-0492-5644</orcidid><orcidid>https://orcid.org/0000-0002-2256-1648</orcidid></search><sort><creationdate>20210215</creationdate><title>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</title><author>Dukart, Juergen ; Holiga, Stefan ; Rullmann, Michael ; Lanzenberger, Rupert ; Hawkins, Peter C. T. ; Mehta, Mitul A. ; Hesse, Swen ; Barthel, Henryk ; Sabri, Osama ; Jech, Robert ; Eickhoff, Simon B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5104-443daea7520527a1d558abab731868e9648757b9c1b222d2ea426e2fd823a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood flow</topic><topic>Brain mapping</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - drug effects</topic><topic>Correlation analysis</topic><topic>Dopamine D2 receptors</topic><topic>Flumazenil</topic><topic>GABA</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Movement disorders</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>neuropharmacology</topic><topic>Neurophysiology</topic><topic>Neurotransmission</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>Neurotransmitters</topic><topic>Norepinephrine</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson's disease</topic><topic>Positron-Emission Tomography</topic><topic>Receptors, Neurotransmitter - drug effects</topic><topic>Resonance</topic><topic>Risperidone</topic><topic>Serotonin</topic><topic>Spatial analysis</topic><topic>Synaptic Transmission - physiology</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dukart, Juergen</creatorcontrib><creatorcontrib>Holiga, Stefan</creatorcontrib><creatorcontrib>Rullmann, Michael</creatorcontrib><creatorcontrib>Lanzenberger, Rupert</creatorcontrib><creatorcontrib>Hawkins, Peter C. T.</creatorcontrib><creatorcontrib>Mehta, Mitul A.</creatorcontrib><creatorcontrib>Hesse, Swen</creatorcontrib><creatorcontrib>Barthel, Henryk</creatorcontrib><creatorcontrib>Sabri, Osama</creatorcontrib><creatorcontrib>Jech, Robert</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dukart, Juergen</au><au>Holiga, Stefan</au><au>Rullmann, Michael</au><au>Lanzenberger, Rupert</au><au>Hawkins, Peter C. T.</au><au>Mehta, Mitul A.</au><au>Hesse, Swen</au><au>Barthel, Henryk</au><au>Sabri, Osama</au><au>Jech, Robert</au><au>Eickhoff, Simon B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>42</volume><issue>3</issue><spage>555</spage><epage>566</epage><pages>555-566</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.
Here, we introduce the JuSpace toolbox allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. The toolbox provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33079453</pmid><doi>10.1002/hbm.25244</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4641-9539</orcidid><orcidid>https://orcid.org/0000-0003-0492-5644</orcidid><orcidid>https://orcid.org/0000-0002-2256-1648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2021-02, Vol.42 (3), p.555-566 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7814756 |
source | MEDLINE; Wiley Journals; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Blood flow Brain mapping Cerebral blood flow Cerebrovascular Circulation - drug effects Correlation analysis Dopamine D2 receptors Flumazenil GABA Humans Magnetic Resonance Imaging Medical imaging Movement disorders Neurodegeneration Neurodegenerative diseases Neuroimaging Neuroimaging - methods neuropharmacology Neurophysiology Neurotransmission Neurotransmitter Agents - pharmacology Neurotransmitters Norepinephrine Parkinson Disease - diagnostic imaging Parkinson Disease - metabolism Parkinson's disease Positron-Emission Tomography Receptors, Neurotransmitter - drug effects Resonance Risperidone Serotonin Spatial analysis Synaptic Transmission - physiology Tomography, Emission-Computed, Single-Photon γ-Aminobutyric acid |
title | JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JuSpace:%20A%20tool%20for%20spatial%20correlation%20analyses%20of%20magnetic%20resonance%20imaging%20data%20with%20nuclear%20imaging%20derived%20neurotransmitter%20maps&rft.jtitle=Human%20brain%20mapping&rft.au=Dukart,%20Juergen&rft.date=2021-02-15&rft.volume=42&rft.issue=3&rft.spage=555&rft.epage=566&rft.pages=555-566&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25244&rft_dat=%3Cgale_pubme%3EA710623736%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478758913&rft_id=info:pmid/33079453&rft_galeid=A710623736&rfr_iscdi=true |