Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations
Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulati...
Gespeichert in:
Veröffentlicht in: | RNA (Cambridge) 2021-02, Vol.27 (2), p.202-220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | 2 |
container_start_page | 202 |
container_title | RNA (Cambridge) |
container_volume | 27 |
creator | Seelam Prabhakar, Preethi Takyi, Nathania A Wetmore, Stacey D |
description | Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i
A, t
A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m
G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation. |
doi_str_mv | 10.1261/rna.078097.120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7812866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504378406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3d24676ef50c115b2075756cae4b7e5b1cc9ac688419645fa7f5f221ea0bf4413</originalsourceid><addsrcrecordid>eNpdUctuFDEQtFAQecCVY2QpFy6z2OPn5BBpFZKAFB5CcLY8XjvraMae2B4krvlyvNllFTjZVV1d3a0C4C1GC9xy_D4FvUBCok5UjF6AI0x513QI4YP6J4w1ksj2EBznfF9JUsuvwCEhLaaEkCPw-C3mUpIO2SQ_FR-DHuAYV955ozcwQ11gWVtIRFnDKWa_YaEPT6QOxZu4qkQudmyGGCcYHSzfvyzPK5VmU-ZUHX3I_m5dMnQpjvDzB5j9OA_bAa_BS6eHbN_s3hPw8_rqx-XH5vbrzafL5W1jKJalIauWcsGtY8hgzPoWCSYYN9rSXljWY2M6bbiUFHecMqeFY65tsdWod5RicgIutr7T3I92ZWyodw9qSn7U6beK2qt_K8Gv1V38pYTEreS8GrzbGaT4MNtc1OizscOgg41zVnU_ghERHanSs_-k93GuWQ1VxRAlQlK0MVxsVSbFnJN1-2UwUpt4VW1R23grRrXh9PkJe_nfPMkf8aOjcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504378406</pqid></control><display><type>article</type><title>Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Seelam Prabhakar, Preethi ; Takyi, Nathania A ; Wetmore, Stacey D</creator><creatorcontrib>Seelam Prabhakar, Preethi ; Takyi, Nathania A ; Wetmore, Stacey D</creatorcontrib><description>Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i
A, t
A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m
G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.078097.120</identifier><identifier>PMID: 33214333</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Adenosine - analogs & derivatives ; Adenosine - metabolism ; Anticodon - chemistry ; Anticodon - genetics ; Anticodon - metabolism ; Base Pairing ; Base Sequence ; Conformation ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Isopentenyladenosine - chemistry ; Isopentenyladenosine - metabolism ; Molecular Dynamics Simulation ; mRNA ; Nucleic Acid Conformation ; Nucleosides - chemistry ; Nucleosides - metabolism ; Phylogeny ; Post-transcription ; RNA Processing, Post-Transcriptional ; RNA, Transfer, Lys - chemistry ; RNA, Transfer, Lys - genetics ; RNA, Transfer, Lys - metabolism ; RNA, Transfer, Phe - chemistry ; RNA, Transfer, Phe - genetics ; RNA, Transfer, Phe - metabolism ; Structure-function relationships ; Transfer RNA ; tRNA</subject><ispartof>RNA (Cambridge), 2021-02, Vol.27 (2), p.202-220</ispartof><rights>2021 Seelam Prabhakar et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Feb 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3d24676ef50c115b2075756cae4b7e5b1cc9ac688419645fa7f5f221ea0bf4413</citedby><cites>FETCH-LOGICAL-c418t-3d24676ef50c115b2075756cae4b7e5b1cc9ac688419645fa7f5f221ea0bf4413</cites><orcidid>0000-0002-6436-9005 ; 0000-0002-8749-4685 ; 0000-0002-5801-3942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812866/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812866/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33214333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seelam Prabhakar, Preethi</creatorcontrib><creatorcontrib>Takyi, Nathania A</creatorcontrib><creatorcontrib>Wetmore, Stacey D</creatorcontrib><title>Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i
A, t
A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m
G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.</description><subject>Adenosine - analogs & derivatives</subject><subject>Adenosine - metabolism</subject><subject>Anticodon - chemistry</subject><subject>Anticodon - genetics</subject><subject>Anticodon - metabolism</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Conformation</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Isopentenyladenosine - chemistry</subject><subject>Isopentenyladenosine - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>mRNA</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosides - chemistry</subject><subject>Nucleosides - metabolism</subject><subject>Phylogeny</subject><subject>Post-transcription</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Transfer, Lys - chemistry</subject><subject>RNA, Transfer, Lys - genetics</subject><subject>RNA, Transfer, Lys - metabolism</subject><subject>RNA, Transfer, Phe - chemistry</subject><subject>RNA, Transfer, Phe - genetics</subject><subject>RNA, Transfer, Phe - metabolism</subject><subject>Structure-function relationships</subject><subject>Transfer RNA</subject><subject>tRNA</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUctuFDEQtFAQecCVY2QpFy6z2OPn5BBpFZKAFB5CcLY8XjvraMae2B4krvlyvNllFTjZVV1d3a0C4C1GC9xy_D4FvUBCok5UjF6AI0x513QI4YP6J4w1ksj2EBznfF9JUsuvwCEhLaaEkCPw-C3mUpIO2SQ_FR-DHuAYV955ozcwQ11gWVtIRFnDKWa_YaEPT6QOxZu4qkQudmyGGCcYHSzfvyzPK5VmU-ZUHX3I_m5dMnQpjvDzB5j9OA_bAa_BS6eHbN_s3hPw8_rqx-XH5vbrzafL5W1jKJalIauWcsGtY8hgzPoWCSYYN9rSXljWY2M6bbiUFHecMqeFY65tsdWod5RicgIutr7T3I92ZWyodw9qSn7U6beK2qt_K8Gv1V38pYTEreS8GrzbGaT4MNtc1OizscOgg41zVnU_ghERHanSs_-k93GuWQ1VxRAlQlK0MVxsVSbFnJN1-2UwUpt4VW1R23grRrXh9PkJe_nfPMkf8aOjcA</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Seelam Prabhakar, Preethi</creator><creator>Takyi, Nathania A</creator><creator>Wetmore, Stacey D</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6436-9005</orcidid><orcidid>https://orcid.org/0000-0002-8749-4685</orcidid><orcidid>https://orcid.org/0000-0002-5801-3942</orcidid></search><sort><creationdate>202102</creationdate><title>Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations</title><author>Seelam Prabhakar, Preethi ; Takyi, Nathania A ; Wetmore, Stacey D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3d24676ef50c115b2075756cae4b7e5b1cc9ac688419645fa7f5f221ea0bf4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine - analogs & derivatives</topic><topic>Adenosine - metabolism</topic><topic>Anticodon - chemistry</topic><topic>Anticodon - genetics</topic><topic>Anticodon - metabolism</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Conformation</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Isopentenyladenosine - chemistry</topic><topic>Isopentenyladenosine - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>mRNA</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosides - chemistry</topic><topic>Nucleosides - metabolism</topic><topic>Phylogeny</topic><topic>Post-transcription</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Transfer, Lys - chemistry</topic><topic>RNA, Transfer, Lys - genetics</topic><topic>RNA, Transfer, Lys - metabolism</topic><topic>RNA, Transfer, Phe - chemistry</topic><topic>RNA, Transfer, Phe - genetics</topic><topic>RNA, Transfer, Phe - metabolism</topic><topic>Structure-function relationships</topic><topic>Transfer RNA</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seelam Prabhakar, Preethi</creatorcontrib><creatorcontrib>Takyi, Nathania A</creatorcontrib><creatorcontrib>Wetmore, Stacey D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seelam Prabhakar, Preethi</au><au>Takyi, Nathania A</au><au>Wetmore, Stacey D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2021-02</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>202</spage><epage>220</epage><pages>202-220</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i
A, t
A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m
G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>33214333</pmid><doi>10.1261/rna.078097.120</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6436-9005</orcidid><orcidid>https://orcid.org/0000-0002-8749-4685</orcidid><orcidid>https://orcid.org/0000-0002-5801-3942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-8382 |
ispartof | RNA (Cambridge), 2021-02, Vol.27 (2), p.202-220 |
issn | 1355-8382 1469-9001 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7812866 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenosine - analogs & derivatives Adenosine - metabolism Anticodon - chemistry Anticodon - genetics Anticodon - metabolism Base Pairing Base Sequence Conformation Escherichia coli - genetics Escherichia coli - metabolism Isopentenyladenosine - chemistry Isopentenyladenosine - metabolism Molecular Dynamics Simulation mRNA Nucleic Acid Conformation Nucleosides - chemistry Nucleosides - metabolism Phylogeny Post-transcription RNA Processing, Post-Transcriptional RNA, Transfer, Lys - chemistry RNA, Transfer, Lys - genetics RNA, Transfer, Lys - metabolism RNA, Transfer, Phe - chemistry RNA, Transfer, Phe - genetics RNA, Transfer, Phe - metabolism Structure-function relationships Transfer RNA tRNA |
title | Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posttranscriptional%20modifications%20at%20the%2037th%20position%20in%20the%20anticodon%20stem-loop%20of%20tRNA:%20structural%20insights%20from%20MD%20simulations&rft.jtitle=RNA%20(Cambridge)&rft.au=Seelam%20Prabhakar,%20Preethi&rft.date=2021-02&rft.volume=27&rft.issue=2&rft.spage=202&rft.epage=220&rft.pages=202-220&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.078097.120&rft_dat=%3Cproquest_pubme%3E2504378406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504378406&rft_id=info:pmid/33214333&rfr_iscdi=true |