Efficient CRISPR-mediated base editing in Agrobacterium spp
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-01, Vol.118 (2), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Rodrigues, Savio D. Karimi, Mansour Impens, Lennert Van Lerberge, Els Coussens, Griet Aesaert, Stijn Rombaut, Debbie Holtappels, Dominique Ibrahim, Heba M. M. Van Montagu, Marc Wagemans, Jeroen Jacobs, Thomas B. De Coninck, Barbara Pauwels, Laurens |
description | Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes. As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of “engineering the engineer,” leading to improved Agrobacterium strains for more efficient plant transformation and gene editing. |
doi_str_mv | 10.1073/pnas.2013338118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7812762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27005926</jstor_id><sourcerecordid>27005926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c5e9e97863cb720570a69f3386f127a8557b8620b71394403859e5d9bb7d0c263</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWqtnT8qCFy9bJ4_dJAhCKVULBcXHOWTTbE1pd9dkV_C_N6VaH6cQ5jfffDMfQicYBhg4vWwqHQYEMKVUYCx2UA-DxGnOJOyiHgDhqWCEHaDDEBYAIDMB--iAUsYowaSHrsZl6YyzVZuMHidPD4_pys6cbu0sKXSwSfy0rponrkqGc18X2rTWu26VhKY5QnulXgZ7_PX20cvN-Hl0l07vbyej4TQ1cUqbmsxKK7nIqSk4gYyDzmUZDeclJlyLLOOFyAkUHFPJGFCRSZvNZFHwGRiS0z663ug2XRHdmWjW66VqvFtp_6Fq7dTfSuVe1bx-V1zEATmJAhdfAr5-62xo1coFY5dLXdm6C4owLoBhwdazzv-hi7rzVVxvTTGJcx6v3UeXG8r4OgRvy60ZDGodjFoHo36CiR1nv3fY8t9JROB0AyxCW_ttnXCATMYjfALwj5EE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474916701</pqid></control><display><type>article</type><title>Efficient CRISPR-mediated base editing in Agrobacterium spp</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodrigues, Savio D. ; Karimi, Mansour ; Impens, Lennert ; Van Lerberge, Els ; Coussens, Griet ; Aesaert, Stijn ; Rombaut, Debbie ; Holtappels, Dominique ; Ibrahim, Heba M. M. ; Van Montagu, Marc ; Wagemans, Jeroen ; Jacobs, Thomas B. ; De Coninck, Barbara ; Pauwels, Laurens</creator><creatorcontrib>Rodrigues, Savio D. ; Karimi, Mansour ; Impens, Lennert ; Van Lerberge, Els ; Coussens, Griet ; Aesaert, Stijn ; Rombaut, Debbie ; Holtappels, Dominique ; Ibrahim, Heba M. M. ; Van Montagu, Marc ; Wagemans, Jeroen ; Jacobs, Thomas B. ; De Coninck, Barbara ; Pauwels, Laurens</creatorcontrib><description>Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes. As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of “engineering the engineer,” leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2013338118</identifier><identifier>PMID: 33443212</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agricultural biotechnology ; Agricultural engineering ; Agricultural practices ; Agrobacterium ; Agrobacterium - genetics ; Agrobacterium tumefaciens - genetics ; Biological Sciences ; Biotechnology ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; CRISPR ; CRISPR-Associated Proteins - genetics ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas Systems - genetics ; CRISPR-Cas Systems - physiology ; Crown gall ; Cytidine deaminase ; Deoxyribonucleic acid ; DNA ; DNA, Plant - genetics ; Gene Editing - methods ; Genes, Plant - genetics ; Genetic engineering ; Genetic modification ; Genetic transformation ; Genome editing ; Genome, Plant - genetics ; Genomes ; Hairy root ; Mutagenesis - genetics ; Mutation ; Mutation - genetics ; Plant cells ; RecA protein ; Root development ; Transformations ; Zea mays ; Zea mays - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (2), p.1-8</ispartof><rights>Copyright National Academy of Sciences Jan 12, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c5e9e97863cb720570a69f3386f127a8557b8620b71394403859e5d9bb7d0c263</citedby><cites>FETCH-LOGICAL-c443t-c5e9e97863cb720570a69f3386f127a8557b8620b71394403859e5d9bb7d0c263</cites><orcidid>0000-0003-2285-5782 ; 0000-0002-9349-5086 ; 0000-0003-0603-7755 ; 0000-0002-0221-9052 ; 0000-0002-2185-5724 ; 0000-0001-8787-7347 ; 0000-0002-0246-9318 ; 0000-0003-4711-5131 ; 0000-0002-5408-492X ; 0000-0002-8407-7413 ; 0000-0003-1641-6310 ; 0000-0003-4263-3407 ; 0000-0002-6330-4744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27005926$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27005926$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33443212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Savio D.</creatorcontrib><creatorcontrib>Karimi, Mansour</creatorcontrib><creatorcontrib>Impens, Lennert</creatorcontrib><creatorcontrib>Van Lerberge, Els</creatorcontrib><creatorcontrib>Coussens, Griet</creatorcontrib><creatorcontrib>Aesaert, Stijn</creatorcontrib><creatorcontrib>Rombaut, Debbie</creatorcontrib><creatorcontrib>Holtappels, Dominique</creatorcontrib><creatorcontrib>Ibrahim, Heba M. M.</creatorcontrib><creatorcontrib>Van Montagu, Marc</creatorcontrib><creatorcontrib>Wagemans, Jeroen</creatorcontrib><creatorcontrib>Jacobs, Thomas B.</creatorcontrib><creatorcontrib>De Coninck, Barbara</creatorcontrib><creatorcontrib>Pauwels, Laurens</creatorcontrib><title>Efficient CRISPR-mediated base editing in Agrobacterium spp</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes. As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of “engineering the engineer,” leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.</description><subject>Agricultural biotechnology</subject><subject>Agricultural engineering</subject><subject>Agricultural practices</subject><subject>Agrobacterium</subject><subject>Agrobacterium - genetics</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>CRISPR</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR-Cas Systems - physiology</subject><subject>Crown gall</subject><subject>Cytidine deaminase</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Plant - genetics</subject><subject>Gene Editing - methods</subject><subject>Genes, Plant - genetics</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Genetic transformation</subject><subject>Genome editing</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Hairy root</subject><subject>Mutagenesis - genetics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Plant cells</subject><subject>RecA protein</subject><subject>Root development</subject><subject>Transformations</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMoWqtnT8qCFy9bJ4_dJAhCKVULBcXHOWTTbE1pd9dkV_C_N6VaH6cQ5jfffDMfQicYBhg4vWwqHQYEMKVUYCx2UA-DxGnOJOyiHgDhqWCEHaDDEBYAIDMB--iAUsYowaSHrsZl6YyzVZuMHidPD4_pys6cbu0sKXSwSfy0rponrkqGc18X2rTWu26VhKY5QnulXgZ7_PX20cvN-Hl0l07vbyej4TQ1cUqbmsxKK7nIqSk4gYyDzmUZDeclJlyLLOOFyAkUHFPJGFCRSZvNZFHwGRiS0z663ug2XRHdmWjW66VqvFtp_6Fq7dTfSuVe1bx-V1zEATmJAhdfAr5-62xo1coFY5dLXdm6C4owLoBhwdazzv-hi7rzVVxvTTGJcx6v3UeXG8r4OgRvy60ZDGodjFoHo36CiR1nv3fY8t9JROB0AyxCW_ttnXCATMYjfALwj5EE</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Rodrigues, Savio D.</creator><creator>Karimi, Mansour</creator><creator>Impens, Lennert</creator><creator>Van Lerberge, Els</creator><creator>Coussens, Griet</creator><creator>Aesaert, Stijn</creator><creator>Rombaut, Debbie</creator><creator>Holtappels, Dominique</creator><creator>Ibrahim, Heba M. M.</creator><creator>Van Montagu, Marc</creator><creator>Wagemans, Jeroen</creator><creator>Jacobs, Thomas B.</creator><creator>De Coninck, Barbara</creator><creator>Pauwels, Laurens</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2285-5782</orcidid><orcidid>https://orcid.org/0000-0002-9349-5086</orcidid><orcidid>https://orcid.org/0000-0003-0603-7755</orcidid><orcidid>https://orcid.org/0000-0002-0221-9052</orcidid><orcidid>https://orcid.org/0000-0002-2185-5724</orcidid><orcidid>https://orcid.org/0000-0001-8787-7347</orcidid><orcidid>https://orcid.org/0000-0002-0246-9318</orcidid><orcidid>https://orcid.org/0000-0003-4711-5131</orcidid><orcidid>https://orcid.org/0000-0002-5408-492X</orcidid><orcidid>https://orcid.org/0000-0002-8407-7413</orcidid><orcidid>https://orcid.org/0000-0003-1641-6310</orcidid><orcidid>https://orcid.org/0000-0003-4263-3407</orcidid><orcidid>https://orcid.org/0000-0002-6330-4744</orcidid></search><sort><creationdate>20210112</creationdate><title>Efficient CRISPR-mediated base editing in Agrobacterium spp</title><author>Rodrigues, Savio D. ; Karimi, Mansour ; Impens, Lennert ; Van Lerberge, Els ; Coussens, Griet ; Aesaert, Stijn ; Rombaut, Debbie ; Holtappels, Dominique ; Ibrahim, Heba M. M. ; Van Montagu, Marc ; Wagemans, Jeroen ; Jacobs, Thomas B. ; De Coninck, Barbara ; Pauwels, Laurens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c5e9e97863cb720570a69f3386f127a8557b8620b71394403859e5d9bb7d0c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural biotechnology</topic><topic>Agricultural engineering</topic><topic>Agricultural practices</topic><topic>Agrobacterium</topic><topic>Agrobacterium - genetics</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>CRISPR</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR-Cas Systems - physiology</topic><topic>Crown gall</topic><topic>Cytidine deaminase</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Plant - genetics</topic><topic>Gene Editing - methods</topic><topic>Genes, Plant - genetics</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Genetic transformation</topic><topic>Genome editing</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Hairy root</topic><topic>Mutagenesis - genetics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Plant cells</topic><topic>RecA protein</topic><topic>Root development</topic><topic>Transformations</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Savio D.</creatorcontrib><creatorcontrib>Karimi, Mansour</creatorcontrib><creatorcontrib>Impens, Lennert</creatorcontrib><creatorcontrib>Van Lerberge, Els</creatorcontrib><creatorcontrib>Coussens, Griet</creatorcontrib><creatorcontrib>Aesaert, Stijn</creatorcontrib><creatorcontrib>Rombaut, Debbie</creatorcontrib><creatorcontrib>Holtappels, Dominique</creatorcontrib><creatorcontrib>Ibrahim, Heba M. M.</creatorcontrib><creatorcontrib>Van Montagu, Marc</creatorcontrib><creatorcontrib>Wagemans, Jeroen</creatorcontrib><creatorcontrib>Jacobs, Thomas B.</creatorcontrib><creatorcontrib>De Coninck, Barbara</creatorcontrib><creatorcontrib>Pauwels, Laurens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Savio D.</au><au>Karimi, Mansour</au><au>Impens, Lennert</au><au>Van Lerberge, Els</au><au>Coussens, Griet</au><au>Aesaert, Stijn</au><au>Rombaut, Debbie</au><au>Holtappels, Dominique</au><au>Ibrahim, Heba M. M.</au><au>Van Montagu, Marc</au><au>Wagemans, Jeroen</au><au>Jacobs, Thomas B.</au><au>De Coninck, Barbara</au><au>Pauwels, Laurens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient CRISPR-mediated base editing in Agrobacterium spp</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>118</volume><issue>2</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes. As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of “engineering the engineer,” leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33443212</pmid><doi>10.1073/pnas.2013338118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2285-5782</orcidid><orcidid>https://orcid.org/0000-0002-9349-5086</orcidid><orcidid>https://orcid.org/0000-0003-0603-7755</orcidid><orcidid>https://orcid.org/0000-0002-0221-9052</orcidid><orcidid>https://orcid.org/0000-0002-2185-5724</orcidid><orcidid>https://orcid.org/0000-0001-8787-7347</orcidid><orcidid>https://orcid.org/0000-0002-0246-9318</orcidid><orcidid>https://orcid.org/0000-0003-4711-5131</orcidid><orcidid>https://orcid.org/0000-0002-5408-492X</orcidid><orcidid>https://orcid.org/0000-0002-8407-7413</orcidid><orcidid>https://orcid.org/0000-0003-1641-6310</orcidid><orcidid>https://orcid.org/0000-0003-4263-3407</orcidid><orcidid>https://orcid.org/0000-0002-6330-4744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-01, Vol.118 (2), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7812762 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agricultural biotechnology Agricultural engineering Agricultural practices Agrobacterium Agrobacterium - genetics Agrobacterium tumefaciens - genetics Biological Sciences Biotechnology Clustered Regularly Interspaced Short Palindromic Repeats - genetics CRISPR CRISPR-Associated Proteins - genetics CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems - genetics CRISPR-Cas Systems - physiology Crown gall Cytidine deaminase Deoxyribonucleic acid DNA DNA, Plant - genetics Gene Editing - methods Genes, Plant - genetics Genetic engineering Genetic modification Genetic transformation Genome editing Genome, Plant - genetics Genomes Hairy root Mutagenesis - genetics Mutation Mutation - genetics Plant cells RecA protein Root development Transformations Zea mays Zea mays - genetics |
title | Efficient CRISPR-mediated base editing in Agrobacterium spp |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20CRISPR-mediated%20base%20editing%20in%20Agrobacterium%20spp&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rodrigues,%20Savio%20D.&rft.date=2021-01-12&rft.volume=118&rft.issue=2&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2013338118&rft_dat=%3Cjstor_pubme%3E27005926%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474916701&rft_id=info:pmid/33443212&rft_jstor_id=27005926&rfr_iscdi=true |