Evaluation of piggyBac‐mediated anti‐CD19 CAR‐T cells after ex vivo expansion with aAPCs or magnetic beads
Adoptive immunotherapy is a new potential method of tumour therapy, among which anti‐CD19 chimeric antigen receptor T‐cell therapy (CAR‐T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR‐T cells expanded ex viv...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2021-01, Vol.25 (2), p.686-700 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 2 |
container_start_page | 686 |
container_title | Journal of cellular and molecular medicine |
container_volume | 25 |
creator | Yang, Li‐Rong Li, Lin Meng, Ming‐Yao Wang, Wen‐Ju Yang, Song‐Lin Zhao, Yi‐Yi Wang, Run‐Qing Gao, Hui Tang, Wei‐Wei Yang, Yang Yang, Li‐Li Liao, Li‐Wei Hou, Zong‐Liu |
description | Adoptive immunotherapy is a new potential method of tumour therapy, among which anti‐CD19 chimeric antigen receptor T‐cell therapy (CAR‐T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR‐T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR‐T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR‐T cells expanded with anti‐CD3/CD28 mAb‐coated beads and those expanded with cell‐based aAPCs expressing CD19/CD64/CD86/CD137L/mIL‐15 counter‐receptors were compared. The results showed that the number of CD19‐specific CAR‐T cells with a 4‐1BB and CD28 co‐stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR‐T cells expanded with aAPCs comparing with the beads. Both CAR‐T cells showed significant targeted tumoricidal effects. The CAR‐T cells stimulated with aAPCs secreted apoptosis‐related cytokines. Moreover, they also possessed marked anti‐tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR‐T cells genetically modified by piggyBac transposon system. |
doi_str_mv | 10.1111/jcmm.16118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7812273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478415021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-1d1bbd0ceca265997483db2f6bc0fffca253c22071fac88725091070ca8a1ca73</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEoqVw4QGQJS4IaYvHTmLngrSE0oJagVA5WxPH2XqVxMFOtuyNR-AZ-yR12KUCDp3LjD2ffs2vP0meAz2GWG_WuuuOIQeQD5JDyCRbpAVPH-5nkFweJE9CWFPKc-DF4-SAc8ayTNLDZDjZYDvhaF1PXEMGu1pt36G--fmrM7XF0dQE-9HGd_keClIuv8bxkmjTtoFgMxpPzA-ysRsX-4B9mIWu7XhFcPmlDMR50uGqN6PVpDJYh6fJowbbYJ7t-1Hy7cPJZXm2OP98-rFcni90KnK5gBqqqqbaaGR5VhQilbyuWJNXmjZNE38zrhmjAhrUUgqW0QKooBolgkbBj5K3O91hqqIVbfrRY6sGbzv0W-XQqn83vb1SK7dRQgJjgkeBV3sB775PJoyqs2H2jb1xU1AszXk8DKiM6Mv_0LWbfB_tKU5lLgqZcbiPYqmQKWSUzdTrHaW9C8Gb5u5koGqOW81xq99xR_jF3ybv0D_5RgB2wLVtzfYeKfWpvLjYid4CBpa3hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478415021</pqid></control><display><type>article</type><title>Evaluation of piggyBac‐mediated anti‐CD19 CAR‐T cells after ex vivo expansion with aAPCs or magnetic beads</title><source>Wiley Online Library - AutoHoldings Journals</source><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Li‐Rong ; Li, Lin ; Meng, Ming‐Yao ; Wang, Wen‐Ju ; Yang, Song‐Lin ; Zhao, Yi‐Yi ; Wang, Run‐Qing ; Gao, Hui ; Tang, Wei‐Wei ; Yang, Yang ; Yang, Li‐Li ; Liao, Li‐Wei ; Hou, Zong‐Liu</creator><creatorcontrib>Yang, Li‐Rong ; Li, Lin ; Meng, Ming‐Yao ; Wang, Wen‐Ju ; Yang, Song‐Lin ; Zhao, Yi‐Yi ; Wang, Run‐Qing ; Gao, Hui ; Tang, Wei‐Wei ; Yang, Yang ; Yang, Li‐Li ; Liao, Li‐Wei ; Hou, Zong‐Liu</creatorcontrib><description>Adoptive immunotherapy is a new potential method of tumour therapy, among which anti‐CD19 chimeric antigen receptor T‐cell therapy (CAR‐T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR‐T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR‐T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR‐T cells expanded with anti‐CD3/CD28 mAb‐coated beads and those expanded with cell‐based aAPCs expressing CD19/CD64/CD86/CD137L/mIL‐15 counter‐receptors were compared. The results showed that the number of CD19‐specific CAR‐T cells with a 4‐1BB and CD28 co‐stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR‐T cells expanded with aAPCs comparing with the beads. Both CAR‐T cells showed significant targeted tumoricidal effects. The CAR‐T cells stimulated with aAPCs secreted apoptosis‐related cytokines. Moreover, they also possessed marked anti‐tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR‐T cells genetically modified by piggyBac transposon system.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.16118</identifier><identifier>PMID: 33225580</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Adoptive immunotherapy ; Antigens ; Apoptosis ; artificial antigen‐presenting cells ; CAR‐T cells ; CD19 ; CD19 antigen ; CD28 antigen ; CD3 antigen ; CD86 antigen ; Cell therapy ; Cells ; Chimeric antigen receptors ; Clinical trials ; Cloning ; Cytokines ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; FDA approval ; Flow cytometry ; Foot & mouth disease ; Genes ; Immunological memory ; Immunotherapy ; Ligands ; Lymphocytes ; Lymphocytes T ; Malignancy ; Medical research ; Memory cells ; Monoclonal antibodies ; Original ; Penicillin ; Phenotypes ; piggyBac ; Tumors ; Xenografts</subject><ispartof>Journal of cellular and molecular medicine, 2021-01, Vol.25 (2), p.686-700</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-1d1bbd0ceca265997483db2f6bc0fffca253c22071fac88725091070ca8a1ca73</citedby><cites>FETCH-LOGICAL-c4768-1d1bbd0ceca265997483db2f6bc0fffca253c22071fac88725091070ca8a1ca73</cites><orcidid>0000-0003-3536-7550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812273/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812273/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33225580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Li‐Rong</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Meng, Ming‐Yao</creatorcontrib><creatorcontrib>Wang, Wen‐Ju</creatorcontrib><creatorcontrib>Yang, Song‐Lin</creatorcontrib><creatorcontrib>Zhao, Yi‐Yi</creatorcontrib><creatorcontrib>Wang, Run‐Qing</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Tang, Wei‐Wei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Yang, Li‐Li</creatorcontrib><creatorcontrib>Liao, Li‐Wei</creatorcontrib><creatorcontrib>Hou, Zong‐Liu</creatorcontrib><title>Evaluation of piggyBac‐mediated anti‐CD19 CAR‐T cells after ex vivo expansion with aAPCs or magnetic beads</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Adoptive immunotherapy is a new potential method of tumour therapy, among which anti‐CD19 chimeric antigen receptor T‐cell therapy (CAR‐T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR‐T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR‐T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR‐T cells expanded with anti‐CD3/CD28 mAb‐coated beads and those expanded with cell‐based aAPCs expressing CD19/CD64/CD86/CD137L/mIL‐15 counter‐receptors were compared. The results showed that the number of CD19‐specific CAR‐T cells with a 4‐1BB and CD28 co‐stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR‐T cells expanded with aAPCs comparing with the beads. Both CAR‐T cells showed significant targeted tumoricidal effects. The CAR‐T cells stimulated with aAPCs secreted apoptosis‐related cytokines. Moreover, they also possessed marked anti‐tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR‐T cells genetically modified by piggyBac transposon system.</description><subject>Adoptive immunotherapy</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>artificial antigen‐presenting cells</subject><subject>CAR‐T cells</subject><subject>CD19</subject><subject>CD19 antigen</subject><subject>CD28 antigen</subject><subject>CD3 antigen</subject><subject>CD86 antigen</subject><subject>Cell therapy</subject><subject>Cells</subject><subject>Chimeric antigen receptors</subject><subject>Clinical trials</subject><subject>Cloning</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>FDA approval</subject><subject>Flow cytometry</subject><subject>Foot & mouth disease</subject><subject>Genes</subject><subject>Immunological memory</subject><subject>Immunotherapy</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Malignancy</subject><subject>Medical research</subject><subject>Memory cells</subject><subject>Monoclonal antibodies</subject><subject>Original</subject><subject>Penicillin</subject><subject>Phenotypes</subject><subject>piggyBac</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhiMEoqVw4QGQJS4IaYvHTmLngrSE0oJagVA5WxPH2XqVxMFOtuyNR-AZ-yR12KUCDp3LjD2ffs2vP0meAz2GWG_WuuuOIQeQD5JDyCRbpAVPH-5nkFweJE9CWFPKc-DF4-SAc8ayTNLDZDjZYDvhaF1PXEMGu1pt36G--fmrM7XF0dQE-9HGd_keClIuv8bxkmjTtoFgMxpPzA-ysRsX-4B9mIWu7XhFcPmlDMR50uGqN6PVpDJYh6fJowbbYJ7t-1Hy7cPJZXm2OP98-rFcni90KnK5gBqqqqbaaGR5VhQilbyuWJNXmjZNE38zrhmjAhrUUgqW0QKooBolgkbBj5K3O91hqqIVbfrRY6sGbzv0W-XQqn83vb1SK7dRQgJjgkeBV3sB775PJoyqs2H2jb1xU1AszXk8DKiM6Mv_0LWbfB_tKU5lLgqZcbiPYqmQKWSUzdTrHaW9C8Gb5u5koGqOW81xq99xR_jF3ybv0D_5RgB2wLVtzfYeKfWpvLjYid4CBpa3hw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Yang, Li‐Rong</creator><creator>Li, Lin</creator><creator>Meng, Ming‐Yao</creator><creator>Wang, Wen‐Ju</creator><creator>Yang, Song‐Lin</creator><creator>Zhao, Yi‐Yi</creator><creator>Wang, Run‐Qing</creator><creator>Gao, Hui</creator><creator>Tang, Wei‐Wei</creator><creator>Yang, Yang</creator><creator>Yang, Li‐Li</creator><creator>Liao, Li‐Wei</creator><creator>Hou, Zong‐Liu</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3536-7550</orcidid></search><sort><creationdate>202101</creationdate><title>Evaluation of piggyBac‐mediated anti‐CD19 CAR‐T cells after ex vivo expansion with aAPCs or magnetic beads</title><author>Yang, Li‐Rong ; Li, Lin ; Meng, Ming‐Yao ; Wang, Wen‐Ju ; Yang, Song‐Lin ; Zhao, Yi‐Yi ; Wang, Run‐Qing ; Gao, Hui ; Tang, Wei‐Wei ; Yang, Yang ; Yang, Li‐Li ; Liao, Li‐Wei ; Hou, Zong‐Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-1d1bbd0ceca265997483db2f6bc0fffca253c22071fac88725091070ca8a1ca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adoptive immunotherapy</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>artificial antigen‐presenting cells</topic><topic>CAR‐T cells</topic><topic>CD19</topic><topic>CD19 antigen</topic><topic>CD28 antigen</topic><topic>CD3 antigen</topic><topic>CD86 antigen</topic><topic>Cell therapy</topic><topic>Cells</topic><topic>Chimeric antigen receptors</topic><topic>Clinical trials</topic><topic>Cloning</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>FDA approval</topic><topic>Flow cytometry</topic><topic>Foot & mouth disease</topic><topic>Genes</topic><topic>Immunological memory</topic><topic>Immunotherapy</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Malignancy</topic><topic>Medical research</topic><topic>Memory cells</topic><topic>Monoclonal antibodies</topic><topic>Original</topic><topic>Penicillin</topic><topic>Phenotypes</topic><topic>piggyBac</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Li‐Rong</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Meng, Ming‐Yao</creatorcontrib><creatorcontrib>Wang, Wen‐Ju</creatorcontrib><creatorcontrib>Yang, Song‐Lin</creatorcontrib><creatorcontrib>Zhao, Yi‐Yi</creatorcontrib><creatorcontrib>Wang, Run‐Qing</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Tang, Wei‐Wei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Yang, Li‐Li</creatorcontrib><creatorcontrib>Liao, Li‐Wei</creatorcontrib><creatorcontrib>Hou, Zong‐Liu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Li‐Rong</au><au>Li, Lin</au><au>Meng, Ming‐Yao</au><au>Wang, Wen‐Ju</au><au>Yang, Song‐Lin</au><au>Zhao, Yi‐Yi</au><au>Wang, Run‐Qing</au><au>Gao, Hui</au><au>Tang, Wei‐Wei</au><au>Yang, Yang</au><au>Yang, Li‐Li</au><au>Liao, Li‐Wei</au><au>Hou, Zong‐Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of piggyBac‐mediated anti‐CD19 CAR‐T cells after ex vivo expansion with aAPCs or magnetic beads</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2021-01</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>686</spage><epage>700</epage><pages>686-700</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Adoptive immunotherapy is a new potential method of tumour therapy, among which anti‐CD19 chimeric antigen receptor T‐cell therapy (CAR‐T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR‐T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR‐T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR‐T cells expanded with anti‐CD3/CD28 mAb‐coated beads and those expanded with cell‐based aAPCs expressing CD19/CD64/CD86/CD137L/mIL‐15 counter‐receptors were compared. The results showed that the number of CD19‐specific CAR‐T cells with a 4‐1BB and CD28 co‐stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR‐T cells expanded with aAPCs comparing with the beads. Both CAR‐T cells showed significant targeted tumoricidal effects. The CAR‐T cells stimulated with aAPCs secreted apoptosis‐related cytokines. Moreover, they also possessed marked anti‐tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR‐T cells genetically modified by piggyBac transposon system.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>33225580</pmid><doi>10.1111/jcmm.16118</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3536-7550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2021-01, Vol.25 (2), p.686-700 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7812273 |
source | Wiley Online Library - AutoHoldings Journals; PubMed Central Free; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Adoptive immunotherapy Antigens Apoptosis artificial antigen‐presenting cells CAR‐T cells CD19 CD19 antigen CD28 antigen CD3 antigen CD86 antigen Cell therapy Cells Chimeric antigen receptors Clinical trials Cloning Cytokines Cytotoxicity Deoxyribonucleic acid DNA FDA approval Flow cytometry Foot & mouth disease Genes Immunological memory Immunotherapy Ligands Lymphocytes Lymphocytes T Malignancy Medical research Memory cells Monoclonal antibodies Original Penicillin Phenotypes piggyBac Tumors Xenografts |
title | Evaluation of piggyBac‐mediated anti‐CD19 CAR‐T cells after ex vivo expansion with aAPCs or magnetic beads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20piggyBac%E2%80%90mediated%20anti%E2%80%90CD19%20CAR%E2%80%90T%20cells%20after%20ex%20vivo%20expansion%20with%20aAPCs%20or%20magnetic%20beads&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Yang,%20Li%E2%80%90Rong&rft.date=2021-01&rft.volume=25&rft.issue=2&rft.spage=686&rft.epage=700&rft.pages=686-700&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.16118&rft_dat=%3Cproquest_pubme%3E2478415021%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478415021&rft_id=info:pmid/33225580&rfr_iscdi=true |