Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2021-01, Vol.131 (2), p.1-17
Hauptverfasser: Sehgal, Kartik, Portell, Andrew, Ivanova, Elena V, Lizotte, Patrick H, Mahadevan, Navin R, Greene, Jonathan R, Vajdi, Amir, Gurjao, Carino, Teceno, Tyler, Taus, Luke J, Thai, Tran C, Kitajima, Shunsuke, Liu, Derek, Tani, Tetsuo, Noureddine, Moataz, Lau, Christie J, Kirschmeier, Paul T, Liu, David, Giannakis, Marios, Jenkins, Russell W, Gokhale, Prafulla C, Goldoni, Silvia, Pinzon-Ortiz, Maria, Hastings, William D, Hammerman, Peter S, Miret, Juan J, Paweletz, Cloud P, Barbie, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 2
container_start_page 1
container_title The Journal of clinical investigation
container_volume 131
creator Sehgal, Kartik
Portell, Andrew
Ivanova, Elena V
Lizotte, Patrick H
Mahadevan, Navin R
Greene, Jonathan R
Vajdi, Amir
Gurjao, Carino
Teceno, Tyler
Taus, Luke J
Thai, Tran C
Kitajima, Shunsuke
Liu, Derek
Tani, Tetsuo
Noureddine, Moataz
Lau, Christie J
Kirschmeier, Paul T
Liu, David
Giannakis, Marios
Jenkins, Russell W
Gokhale, Prafulla C
Goldoni, Silvia
Pinzon-Ortiz, Maria
Hastings, William D
Hammerman, Peter S
Miret, Juan J
Paweletz, Cloud P
Barbie, David A
description Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.
doi_str_mv 10.1172/JCI135038
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7810472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649350580</galeid><sourcerecordid>A649350580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</originalsourceid><addsrcrecordid>eNqNkkuP0zAUhS0EYkphwR9AkZAQLDL4GTubkaoOj6IRg4bH1nISu_Xg2MVOgP57HDGUKeoCeWHp-jvHvj4XgMcIniLE8ct3yxUiDBJxB8wQY6IUmIi7YAYhRmXNiTgBD1K6hhBRyuh9cEIIYqhGcAba851XvW2LZP3a6bLVzhVX7xdF0t9G7dtcLWyn_WCN1amwfT_6MGx0VNtdsdUx2TToWEyyVJjgXPgxST6cl6hoXGi_qk4_BPeMckk_utnn4PPrV5-Wb8uLyzer5eKibCvKh1KxqjGmMZR3xCiElYGGCjpVaVchQWEnECS84YaaCndtxbHiphOsrgWkDZmDs9--27HpddfmV0fl5DbaXsWdDMrKwxNvN3IdvkuefSnH2eD5jUEMufs0yN6mqTXldRiTxJQJSBiuWEaf_oNehzH63J7EDNYcwRrjv9RaOS2tNyHf206mclHROmc2Gc5BeYRaa59_2QWvjc3lA_70CJ9Xp3OSRwUvDgSZGfTPYa3GlOTq49X_s5dfDtlnt9iNVm7YpODGwQafjpq2MaQUtdmHgqCcRljuRzizT26nuCf_zCz5BS2t59M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509710922</pqid></control><display><type>article</type><title>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sehgal, Kartik ; Portell, Andrew ; Ivanova, Elena V ; Lizotte, Patrick H ; Mahadevan, Navin R ; Greene, Jonathan R ; Vajdi, Amir ; Gurjao, Carino ; Teceno, Tyler ; Taus, Luke J ; Thai, Tran C ; Kitajima, Shunsuke ; Liu, Derek ; Tani, Tetsuo ; Noureddine, Moataz ; Lau, Christie J ; Kirschmeier, Paul T ; Liu, David ; Giannakis, Marios ; Jenkins, Russell W ; Gokhale, Prafulla C ; Goldoni, Silvia ; Pinzon-Ortiz, Maria ; Hastings, William D ; Hammerman, Peter S ; Miret, Juan J ; Paweletz, Cloud P ; Barbie, David A</creator><creatorcontrib>Sehgal, Kartik ; Portell, Andrew ; Ivanova, Elena V ; Lizotte, Patrick H ; Mahadevan, Navin R ; Greene, Jonathan R ; Vajdi, Amir ; Gurjao, Carino ; Teceno, Tyler ; Taus, Luke J ; Thai, Tran C ; Kitajima, Shunsuke ; Liu, Derek ; Tani, Tetsuo ; Noureddine, Moataz ; Lau, Christie J ; Kirschmeier, Paul T ; Liu, David ; Giannakis, Marios ; Jenkins, Russell W ; Gokhale, Prafulla C ; Goldoni, Silvia ; Pinzon-Ortiz, Maria ; Hastings, William D ; Hammerman, Peter S ; Miret, Juan J ; Paweletz, Cloud P ; Barbie, David A</creatorcontrib><description>Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI135038</identifier><identifier>PMID: 33151910</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Antagonism ; Apoptosis ; Biomedical research ; Cancer ; Cancer cells ; Carcinogenesis ; Care and treatment ; CD8 antigen ; Cell death ; Cell Line, Tumor ; Collagen ; Cytokines ; Cytotoxicity ; Drug resistance ; Gene expression ; IAP protein ; Identification and classification ; Immunotherapy ; Interleukin 6 ; Lymphocytes ; Lymphocytes T ; Mesenchyme ; Mice ; Neoplasm Proteins - genetics ; Neoplasm Proteins - immunology ; Neoplasms, Experimental - genetics ; Neoplasms, Experimental - immunology ; Neoplasms, Experimental - therapy ; Oncology, Experimental ; PD-1 protein ; Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors ; Programmed Cell Death 1 Receptor - genetics ; Programmed Cell Death 1 Receptor - immunology ; RNA sequencing ; RNA-Seq ; Single-Cell Analysis ; Snail protein ; Spheroids ; Spheroids, Cellular - immunology ; Spheroids, Cellular - pathology ; Stem cell antigen 1 ; Stem cells ; Tumor necrosis factor-α ; Tumors</subject><ispartof>The Journal of clinical investigation, 2021-01, Vol.131 (2), p.1-17</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jan 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</citedby><cites>FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</cites><orcidid>0000-0003-0512-2536 ; 0000-0001-8271-8566 ; 0000-0003-4008-386X ; 0000-0003-0346-5033 ; 0000-0003-4391-6943 ; 0000-0001-9510-0036 ; 0000-0001-6110-2148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810472/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810472/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33151910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sehgal, Kartik</creatorcontrib><creatorcontrib>Portell, Andrew</creatorcontrib><creatorcontrib>Ivanova, Elena V</creatorcontrib><creatorcontrib>Lizotte, Patrick H</creatorcontrib><creatorcontrib>Mahadevan, Navin R</creatorcontrib><creatorcontrib>Greene, Jonathan R</creatorcontrib><creatorcontrib>Vajdi, Amir</creatorcontrib><creatorcontrib>Gurjao, Carino</creatorcontrib><creatorcontrib>Teceno, Tyler</creatorcontrib><creatorcontrib>Taus, Luke J</creatorcontrib><creatorcontrib>Thai, Tran C</creatorcontrib><creatorcontrib>Kitajima, Shunsuke</creatorcontrib><creatorcontrib>Liu, Derek</creatorcontrib><creatorcontrib>Tani, Tetsuo</creatorcontrib><creatorcontrib>Noureddine, Moataz</creatorcontrib><creatorcontrib>Lau, Christie J</creatorcontrib><creatorcontrib>Kirschmeier, Paul T</creatorcontrib><creatorcontrib>Liu, David</creatorcontrib><creatorcontrib>Giannakis, Marios</creatorcontrib><creatorcontrib>Jenkins, Russell W</creatorcontrib><creatorcontrib>Gokhale, Prafulla C</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Pinzon-Ortiz, Maria</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Miret, Juan J</creatorcontrib><creatorcontrib>Paweletz, Cloud P</creatorcontrib><creatorcontrib>Barbie, David A</creatorcontrib><title>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.</description><subject>Animals</subject><subject>Antagonism</subject><subject>Apoptosis</subject><subject>Biomedical research</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Carcinogenesis</subject><subject>Care and treatment</subject><subject>CD8 antigen</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Collagen</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Drug resistance</subject><subject>Gene expression</subject><subject>IAP protein</subject><subject>Identification and classification</subject><subject>Immunotherapy</subject><subject>Interleukin 6</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - immunology</subject><subject>Neoplasms, Experimental - genetics</subject><subject>Neoplasms, Experimental - immunology</subject><subject>Neoplasms, Experimental - therapy</subject><subject>Oncology, Experimental</subject><subject>PD-1 protein</subject><subject>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</subject><subject>Programmed Cell Death 1 Receptor - genetics</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>RNA sequencing</subject><subject>RNA-Seq</subject><subject>Single-Cell Analysis</subject><subject>Snail protein</subject><subject>Spheroids</subject><subject>Spheroids, Cellular - immunology</subject><subject>Spheroids, Cellular - pathology</subject><subject>Stem cell antigen 1</subject><subject>Stem cells</subject><subject>Tumor necrosis factor-α</subject><subject>Tumors</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkkuP0zAUhS0EYkphwR9AkZAQLDL4GTubkaoOj6IRg4bH1nISu_Xg2MVOgP57HDGUKeoCeWHp-jvHvj4XgMcIniLE8ct3yxUiDBJxB8wQY6IUmIi7YAYhRmXNiTgBD1K6hhBRyuh9cEIIYqhGcAba851XvW2LZP3a6bLVzhVX7xdF0t9G7dtcLWyn_WCN1amwfT_6MGx0VNtdsdUx2TToWEyyVJjgXPgxST6cl6hoXGi_qk4_BPeMckk_utnn4PPrV5-Wb8uLyzer5eKibCvKh1KxqjGmMZR3xCiElYGGCjpVaVchQWEnECS84YaaCndtxbHiphOsrgWkDZmDs9--27HpddfmV0fl5DbaXsWdDMrKwxNvN3IdvkuefSnH2eD5jUEMufs0yN6mqTXldRiTxJQJSBiuWEaf_oNehzH63J7EDNYcwRrjv9RaOS2tNyHf206mclHROmc2Gc5BeYRaa59_2QWvjc3lA_70CJ9Xp3OSRwUvDgSZGfTPYa3GlOTq49X_s5dfDtlnt9iNVm7YpODGwQafjpq2MaQUtdmHgqCcRljuRzizT26nuCf_zCz5BS2t59M</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Sehgal, Kartik</creator><creator>Portell, Andrew</creator><creator>Ivanova, Elena V</creator><creator>Lizotte, Patrick H</creator><creator>Mahadevan, Navin R</creator><creator>Greene, Jonathan R</creator><creator>Vajdi, Amir</creator><creator>Gurjao, Carino</creator><creator>Teceno, Tyler</creator><creator>Taus, Luke J</creator><creator>Thai, Tran C</creator><creator>Kitajima, Shunsuke</creator><creator>Liu, Derek</creator><creator>Tani, Tetsuo</creator><creator>Noureddine, Moataz</creator><creator>Lau, Christie J</creator><creator>Kirschmeier, Paul T</creator><creator>Liu, David</creator><creator>Giannakis, Marios</creator><creator>Jenkins, Russell W</creator><creator>Gokhale, Prafulla C</creator><creator>Goldoni, Silvia</creator><creator>Pinzon-Ortiz, Maria</creator><creator>Hastings, William D</creator><creator>Hammerman, Peter S</creator><creator>Miret, Juan J</creator><creator>Paweletz, Cloud P</creator><creator>Barbie, David A</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0512-2536</orcidid><orcidid>https://orcid.org/0000-0001-8271-8566</orcidid><orcidid>https://orcid.org/0000-0003-4008-386X</orcidid><orcidid>https://orcid.org/0000-0003-0346-5033</orcidid><orcidid>https://orcid.org/0000-0003-4391-6943</orcidid><orcidid>https://orcid.org/0000-0001-9510-0036</orcidid><orcidid>https://orcid.org/0000-0001-6110-2148</orcidid></search><sort><creationdate>20210119</creationdate><title>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</title><author>Sehgal, Kartik ; Portell, Andrew ; Ivanova, Elena V ; Lizotte, Patrick H ; Mahadevan, Navin R ; Greene, Jonathan R ; Vajdi, Amir ; Gurjao, Carino ; Teceno, Tyler ; Taus, Luke J ; Thai, Tran C ; Kitajima, Shunsuke ; Liu, Derek ; Tani, Tetsuo ; Noureddine, Moataz ; Lau, Christie J ; Kirschmeier, Paul T ; Liu, David ; Giannakis, Marios ; Jenkins, Russell W ; Gokhale, Prafulla C ; Goldoni, Silvia ; Pinzon-Ortiz, Maria ; Hastings, William D ; Hammerman, Peter S ; Miret, Juan J ; Paweletz, Cloud P ; Barbie, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antagonism</topic><topic>Apoptosis</topic><topic>Biomedical research</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Carcinogenesis</topic><topic>Care and treatment</topic><topic>CD8 antigen</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Collagen</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Drug resistance</topic><topic>Gene expression</topic><topic>IAP protein</topic><topic>Identification and classification</topic><topic>Immunotherapy</topic><topic>Interleukin 6</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - immunology</topic><topic>Neoplasms, Experimental - genetics</topic><topic>Neoplasms, Experimental - immunology</topic><topic>Neoplasms, Experimental - therapy</topic><topic>Oncology, Experimental</topic><topic>PD-1 protein</topic><topic>Programmed Cell Death 1 Receptor - antagonists &amp; inhibitors</topic><topic>Programmed Cell Death 1 Receptor - genetics</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>RNA sequencing</topic><topic>RNA-Seq</topic><topic>Single-Cell Analysis</topic><topic>Snail protein</topic><topic>Spheroids</topic><topic>Spheroids, Cellular - immunology</topic><topic>Spheroids, Cellular - pathology</topic><topic>Stem cell antigen 1</topic><topic>Stem cells</topic><topic>Tumor necrosis factor-α</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehgal, Kartik</creatorcontrib><creatorcontrib>Portell, Andrew</creatorcontrib><creatorcontrib>Ivanova, Elena V</creatorcontrib><creatorcontrib>Lizotte, Patrick H</creatorcontrib><creatorcontrib>Mahadevan, Navin R</creatorcontrib><creatorcontrib>Greene, Jonathan R</creatorcontrib><creatorcontrib>Vajdi, Amir</creatorcontrib><creatorcontrib>Gurjao, Carino</creatorcontrib><creatorcontrib>Teceno, Tyler</creatorcontrib><creatorcontrib>Taus, Luke J</creatorcontrib><creatorcontrib>Thai, Tran C</creatorcontrib><creatorcontrib>Kitajima, Shunsuke</creatorcontrib><creatorcontrib>Liu, Derek</creatorcontrib><creatorcontrib>Tani, Tetsuo</creatorcontrib><creatorcontrib>Noureddine, Moataz</creatorcontrib><creatorcontrib>Lau, Christie J</creatorcontrib><creatorcontrib>Kirschmeier, Paul T</creatorcontrib><creatorcontrib>Liu, David</creatorcontrib><creatorcontrib>Giannakis, Marios</creatorcontrib><creatorcontrib>Jenkins, Russell W</creatorcontrib><creatorcontrib>Gokhale, Prafulla C</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Pinzon-Ortiz, Maria</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Miret, Juan J</creatorcontrib><creatorcontrib>Paweletz, Cloud P</creatorcontrib><creatorcontrib>Barbie, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehgal, Kartik</au><au>Portell, Andrew</au><au>Ivanova, Elena V</au><au>Lizotte, Patrick H</au><au>Mahadevan, Navin R</au><au>Greene, Jonathan R</au><au>Vajdi, Amir</au><au>Gurjao, Carino</au><au>Teceno, Tyler</au><au>Taus, Luke J</au><au>Thai, Tran C</au><au>Kitajima, Shunsuke</au><au>Liu, Derek</au><au>Tani, Tetsuo</au><au>Noureddine, Moataz</au><au>Lau, Christie J</au><au>Kirschmeier, Paul T</au><au>Liu, David</au><au>Giannakis, Marios</au><au>Jenkins, Russell W</au><au>Gokhale, Prafulla C</au><au>Goldoni, Silvia</au><au>Pinzon-Ortiz, Maria</au><au>Hastings, William D</au><au>Hammerman, Peter S</au><au>Miret, Juan J</au><au>Paweletz, Cloud P</au><au>Barbie, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>131</volume><issue>2</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>33151910</pmid><doi>10.1172/JCI135038</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0512-2536</orcidid><orcidid>https://orcid.org/0000-0001-8271-8566</orcidid><orcidid>https://orcid.org/0000-0003-4008-386X</orcidid><orcidid>https://orcid.org/0000-0003-0346-5033</orcidid><orcidid>https://orcid.org/0000-0003-4391-6943</orcidid><orcidid>https://orcid.org/0000-0001-9510-0036</orcidid><orcidid>https://orcid.org/0000-0001-6110-2148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2021-01, Vol.131 (2), p.1-17
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7810472
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Antagonism
Apoptosis
Biomedical research
Cancer
Cancer cells
Carcinogenesis
Care and treatment
CD8 antigen
Cell death
Cell Line, Tumor
Collagen
Cytokines
Cytotoxicity
Drug resistance
Gene expression
IAP protein
Identification and classification
Immunotherapy
Interleukin 6
Lymphocytes
Lymphocytes T
Mesenchyme
Mice
Neoplasm Proteins - genetics
Neoplasm Proteins - immunology
Neoplasms, Experimental - genetics
Neoplasms, Experimental - immunology
Neoplasms, Experimental - therapy
Oncology, Experimental
PD-1 protein
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Programmed Cell Death 1 Receptor - genetics
Programmed Cell Death 1 Receptor - immunology
RNA sequencing
RNA-Seq
Single-Cell Analysis
Snail protein
Spheroids
Spheroids, Cellular - immunology
Spheroids, Cellular - pathology
Stem cell antigen 1
Stem cells
Tumor necrosis factor-α
Tumors
title Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20single-cell%20RNA%20sequencing%20identifies%20immunotherapy%20persister%20cells%20following%20PD-1%20blockade&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Sehgal,%20Kartik&rft.date=2021-01-19&rft.volume=131&rft.issue=2&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI135038&rft_dat=%3Cgale_pubme%3EA649350580%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509710922&rft_id=info:pmid/33151910&rft_galeid=A649350580&rfr_iscdi=true