Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade
Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of mu...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2021-01, Vol.131 (2), p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 131 |
creator | Sehgal, Kartik Portell, Andrew Ivanova, Elena V Lizotte, Patrick H Mahadevan, Navin R Greene, Jonathan R Vajdi, Amir Gurjao, Carino Teceno, Tyler Taus, Luke J Thai, Tran C Kitajima, Shunsuke Liu, Derek Tani, Tetsuo Noureddine, Moataz Lau, Christie J Kirschmeier, Paul T Liu, David Giannakis, Marios Jenkins, Russell W Gokhale, Prafulla C Goldoni, Silvia Pinzon-Ortiz, Maria Hastings, William D Hammerman, Peter S Miret, Juan J Paweletz, Cloud P Barbie, David A |
description | Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations. |
doi_str_mv | 10.1172/JCI135038 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7810472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649350580</galeid><sourcerecordid>A649350580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</originalsourceid><addsrcrecordid>eNqNkkuP0zAUhS0EYkphwR9AkZAQLDL4GTubkaoOj6IRg4bH1nISu_Xg2MVOgP57HDGUKeoCeWHp-jvHvj4XgMcIniLE8ct3yxUiDBJxB8wQY6IUmIi7YAYhRmXNiTgBD1K6hhBRyuh9cEIIYqhGcAba851XvW2LZP3a6bLVzhVX7xdF0t9G7dtcLWyn_WCN1amwfT_6MGx0VNtdsdUx2TToWEyyVJjgXPgxST6cl6hoXGi_qk4_BPeMckk_utnn4PPrV5-Wb8uLyzer5eKibCvKh1KxqjGmMZR3xCiElYGGCjpVaVchQWEnECS84YaaCndtxbHiphOsrgWkDZmDs9--27HpddfmV0fl5DbaXsWdDMrKwxNvN3IdvkuefSnH2eD5jUEMufs0yN6mqTXldRiTxJQJSBiuWEaf_oNehzH63J7EDNYcwRrjv9RaOS2tNyHf206mclHROmc2Gc5BeYRaa59_2QWvjc3lA_70CJ9Xp3OSRwUvDgSZGfTPYa3GlOTq49X_s5dfDtlnt9iNVm7YpODGwQafjpq2MaQUtdmHgqCcRljuRzizT26nuCf_zCz5BS2t59M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509710922</pqid></control><display><type>article</type><title>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sehgal, Kartik ; Portell, Andrew ; Ivanova, Elena V ; Lizotte, Patrick H ; Mahadevan, Navin R ; Greene, Jonathan R ; Vajdi, Amir ; Gurjao, Carino ; Teceno, Tyler ; Taus, Luke J ; Thai, Tran C ; Kitajima, Shunsuke ; Liu, Derek ; Tani, Tetsuo ; Noureddine, Moataz ; Lau, Christie J ; Kirschmeier, Paul T ; Liu, David ; Giannakis, Marios ; Jenkins, Russell W ; Gokhale, Prafulla C ; Goldoni, Silvia ; Pinzon-Ortiz, Maria ; Hastings, William D ; Hammerman, Peter S ; Miret, Juan J ; Paweletz, Cloud P ; Barbie, David A</creator><creatorcontrib>Sehgal, Kartik ; Portell, Andrew ; Ivanova, Elena V ; Lizotte, Patrick H ; Mahadevan, Navin R ; Greene, Jonathan R ; Vajdi, Amir ; Gurjao, Carino ; Teceno, Tyler ; Taus, Luke J ; Thai, Tran C ; Kitajima, Shunsuke ; Liu, Derek ; Tani, Tetsuo ; Noureddine, Moataz ; Lau, Christie J ; Kirschmeier, Paul T ; Liu, David ; Giannakis, Marios ; Jenkins, Russell W ; Gokhale, Prafulla C ; Goldoni, Silvia ; Pinzon-Ortiz, Maria ; Hastings, William D ; Hammerman, Peter S ; Miret, Juan J ; Paweletz, Cloud P ; Barbie, David A</creatorcontrib><description>Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI135038</identifier><identifier>PMID: 33151910</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Antagonism ; Apoptosis ; Biomedical research ; Cancer ; Cancer cells ; Carcinogenesis ; Care and treatment ; CD8 antigen ; Cell death ; Cell Line, Tumor ; Collagen ; Cytokines ; Cytotoxicity ; Drug resistance ; Gene expression ; IAP protein ; Identification and classification ; Immunotherapy ; Interleukin 6 ; Lymphocytes ; Lymphocytes T ; Mesenchyme ; Mice ; Neoplasm Proteins - genetics ; Neoplasm Proteins - immunology ; Neoplasms, Experimental - genetics ; Neoplasms, Experimental - immunology ; Neoplasms, Experimental - therapy ; Oncology, Experimental ; PD-1 protein ; Programmed Cell Death 1 Receptor - antagonists & inhibitors ; Programmed Cell Death 1 Receptor - genetics ; Programmed Cell Death 1 Receptor - immunology ; RNA sequencing ; RNA-Seq ; Single-Cell Analysis ; Snail protein ; Spheroids ; Spheroids, Cellular - immunology ; Spheroids, Cellular - pathology ; Stem cell antigen 1 ; Stem cells ; Tumor necrosis factor-α ; Tumors</subject><ispartof>The Journal of clinical investigation, 2021-01, Vol.131 (2), p.1-17</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jan 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</citedby><cites>FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</cites><orcidid>0000-0003-0512-2536 ; 0000-0001-8271-8566 ; 0000-0003-4008-386X ; 0000-0003-0346-5033 ; 0000-0003-4391-6943 ; 0000-0001-9510-0036 ; 0000-0001-6110-2148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810472/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810472/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33151910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sehgal, Kartik</creatorcontrib><creatorcontrib>Portell, Andrew</creatorcontrib><creatorcontrib>Ivanova, Elena V</creatorcontrib><creatorcontrib>Lizotte, Patrick H</creatorcontrib><creatorcontrib>Mahadevan, Navin R</creatorcontrib><creatorcontrib>Greene, Jonathan R</creatorcontrib><creatorcontrib>Vajdi, Amir</creatorcontrib><creatorcontrib>Gurjao, Carino</creatorcontrib><creatorcontrib>Teceno, Tyler</creatorcontrib><creatorcontrib>Taus, Luke J</creatorcontrib><creatorcontrib>Thai, Tran C</creatorcontrib><creatorcontrib>Kitajima, Shunsuke</creatorcontrib><creatorcontrib>Liu, Derek</creatorcontrib><creatorcontrib>Tani, Tetsuo</creatorcontrib><creatorcontrib>Noureddine, Moataz</creatorcontrib><creatorcontrib>Lau, Christie J</creatorcontrib><creatorcontrib>Kirschmeier, Paul T</creatorcontrib><creatorcontrib>Liu, David</creatorcontrib><creatorcontrib>Giannakis, Marios</creatorcontrib><creatorcontrib>Jenkins, Russell W</creatorcontrib><creatorcontrib>Gokhale, Prafulla C</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Pinzon-Ortiz, Maria</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Miret, Juan J</creatorcontrib><creatorcontrib>Paweletz, Cloud P</creatorcontrib><creatorcontrib>Barbie, David A</creatorcontrib><title>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.</description><subject>Animals</subject><subject>Antagonism</subject><subject>Apoptosis</subject><subject>Biomedical research</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Carcinogenesis</subject><subject>Care and treatment</subject><subject>CD8 antigen</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Collagen</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Drug resistance</subject><subject>Gene expression</subject><subject>IAP protein</subject><subject>Identification and classification</subject><subject>Immunotherapy</subject><subject>Interleukin 6</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - immunology</subject><subject>Neoplasms, Experimental - genetics</subject><subject>Neoplasms, Experimental - immunology</subject><subject>Neoplasms, Experimental - therapy</subject><subject>Oncology, Experimental</subject><subject>PD-1 protein</subject><subject>Programmed Cell Death 1 Receptor - antagonists & inhibitors</subject><subject>Programmed Cell Death 1 Receptor - genetics</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>RNA sequencing</subject><subject>RNA-Seq</subject><subject>Single-Cell Analysis</subject><subject>Snail protein</subject><subject>Spheroids</subject><subject>Spheroids, Cellular - immunology</subject><subject>Spheroids, Cellular - pathology</subject><subject>Stem cell antigen 1</subject><subject>Stem cells</subject><subject>Tumor necrosis factor-α</subject><subject>Tumors</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkkuP0zAUhS0EYkphwR9AkZAQLDL4GTubkaoOj6IRg4bH1nISu_Xg2MVOgP57HDGUKeoCeWHp-jvHvj4XgMcIniLE8ct3yxUiDBJxB8wQY6IUmIi7YAYhRmXNiTgBD1K6hhBRyuh9cEIIYqhGcAba851XvW2LZP3a6bLVzhVX7xdF0t9G7dtcLWyn_WCN1amwfT_6MGx0VNtdsdUx2TToWEyyVJjgXPgxST6cl6hoXGi_qk4_BPeMckk_utnn4PPrV5-Wb8uLyzer5eKibCvKh1KxqjGmMZR3xCiElYGGCjpVaVchQWEnECS84YaaCndtxbHiphOsrgWkDZmDs9--27HpddfmV0fl5DbaXsWdDMrKwxNvN3IdvkuefSnH2eD5jUEMufs0yN6mqTXldRiTxJQJSBiuWEaf_oNehzH63J7EDNYcwRrjv9RaOS2tNyHf206mclHROmc2Gc5BeYRaa59_2QWvjc3lA_70CJ9Xp3OSRwUvDgSZGfTPYa3GlOTq49X_s5dfDtlnt9iNVm7YpODGwQafjpq2MaQUtdmHgqCcRljuRzizT26nuCf_zCz5BS2t59M</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Sehgal, Kartik</creator><creator>Portell, Andrew</creator><creator>Ivanova, Elena V</creator><creator>Lizotte, Patrick H</creator><creator>Mahadevan, Navin R</creator><creator>Greene, Jonathan R</creator><creator>Vajdi, Amir</creator><creator>Gurjao, Carino</creator><creator>Teceno, Tyler</creator><creator>Taus, Luke J</creator><creator>Thai, Tran C</creator><creator>Kitajima, Shunsuke</creator><creator>Liu, Derek</creator><creator>Tani, Tetsuo</creator><creator>Noureddine, Moataz</creator><creator>Lau, Christie J</creator><creator>Kirschmeier, Paul T</creator><creator>Liu, David</creator><creator>Giannakis, Marios</creator><creator>Jenkins, Russell W</creator><creator>Gokhale, Prafulla C</creator><creator>Goldoni, Silvia</creator><creator>Pinzon-Ortiz, Maria</creator><creator>Hastings, William D</creator><creator>Hammerman, Peter S</creator><creator>Miret, Juan J</creator><creator>Paweletz, Cloud P</creator><creator>Barbie, David A</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0512-2536</orcidid><orcidid>https://orcid.org/0000-0001-8271-8566</orcidid><orcidid>https://orcid.org/0000-0003-4008-386X</orcidid><orcidid>https://orcid.org/0000-0003-0346-5033</orcidid><orcidid>https://orcid.org/0000-0003-4391-6943</orcidid><orcidid>https://orcid.org/0000-0001-9510-0036</orcidid><orcidid>https://orcid.org/0000-0001-6110-2148</orcidid></search><sort><creationdate>20210119</creationdate><title>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</title><author>Sehgal, Kartik ; Portell, Andrew ; Ivanova, Elena V ; Lizotte, Patrick H ; Mahadevan, Navin R ; Greene, Jonathan R ; Vajdi, Amir ; Gurjao, Carino ; Teceno, Tyler ; Taus, Luke J ; Thai, Tran C ; Kitajima, Shunsuke ; Liu, Derek ; Tani, Tetsuo ; Noureddine, Moataz ; Lau, Christie J ; Kirschmeier, Paul T ; Liu, David ; Giannakis, Marios ; Jenkins, Russell W ; Gokhale, Prafulla C ; Goldoni, Silvia ; Pinzon-Ortiz, Maria ; Hastings, William D ; Hammerman, Peter S ; Miret, Juan J ; Paweletz, Cloud P ; Barbie, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-a56bffbf47d3fa12af0f48456bf4d61840d81037b7f4f62dc672a7fd8599804b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antagonism</topic><topic>Apoptosis</topic><topic>Biomedical research</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Carcinogenesis</topic><topic>Care and treatment</topic><topic>CD8 antigen</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Collagen</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Drug resistance</topic><topic>Gene expression</topic><topic>IAP protein</topic><topic>Identification and classification</topic><topic>Immunotherapy</topic><topic>Interleukin 6</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - immunology</topic><topic>Neoplasms, Experimental - genetics</topic><topic>Neoplasms, Experimental - immunology</topic><topic>Neoplasms, Experimental - therapy</topic><topic>Oncology, Experimental</topic><topic>PD-1 protein</topic><topic>Programmed Cell Death 1 Receptor - antagonists & inhibitors</topic><topic>Programmed Cell Death 1 Receptor - genetics</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>RNA sequencing</topic><topic>RNA-Seq</topic><topic>Single-Cell Analysis</topic><topic>Snail protein</topic><topic>Spheroids</topic><topic>Spheroids, Cellular - immunology</topic><topic>Spheroids, Cellular - pathology</topic><topic>Stem cell antigen 1</topic><topic>Stem cells</topic><topic>Tumor necrosis factor-α</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehgal, Kartik</creatorcontrib><creatorcontrib>Portell, Andrew</creatorcontrib><creatorcontrib>Ivanova, Elena V</creatorcontrib><creatorcontrib>Lizotte, Patrick H</creatorcontrib><creatorcontrib>Mahadevan, Navin R</creatorcontrib><creatorcontrib>Greene, Jonathan R</creatorcontrib><creatorcontrib>Vajdi, Amir</creatorcontrib><creatorcontrib>Gurjao, Carino</creatorcontrib><creatorcontrib>Teceno, Tyler</creatorcontrib><creatorcontrib>Taus, Luke J</creatorcontrib><creatorcontrib>Thai, Tran C</creatorcontrib><creatorcontrib>Kitajima, Shunsuke</creatorcontrib><creatorcontrib>Liu, Derek</creatorcontrib><creatorcontrib>Tani, Tetsuo</creatorcontrib><creatorcontrib>Noureddine, Moataz</creatorcontrib><creatorcontrib>Lau, Christie J</creatorcontrib><creatorcontrib>Kirschmeier, Paul T</creatorcontrib><creatorcontrib>Liu, David</creatorcontrib><creatorcontrib>Giannakis, Marios</creatorcontrib><creatorcontrib>Jenkins, Russell W</creatorcontrib><creatorcontrib>Gokhale, Prafulla C</creatorcontrib><creatorcontrib>Goldoni, Silvia</creatorcontrib><creatorcontrib>Pinzon-Ortiz, Maria</creatorcontrib><creatorcontrib>Hastings, William D</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Miret, Juan J</creatorcontrib><creatorcontrib>Paweletz, Cloud P</creatorcontrib><creatorcontrib>Barbie, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehgal, Kartik</au><au>Portell, Andrew</au><au>Ivanova, Elena V</au><au>Lizotte, Patrick H</au><au>Mahadevan, Navin R</au><au>Greene, Jonathan R</au><au>Vajdi, Amir</au><au>Gurjao, Carino</au><au>Teceno, Tyler</au><au>Taus, Luke J</au><au>Thai, Tran C</au><au>Kitajima, Shunsuke</au><au>Liu, Derek</au><au>Tani, Tetsuo</au><au>Noureddine, Moataz</au><au>Lau, Christie J</au><au>Kirschmeier, Paul T</au><au>Liu, David</au><au>Giannakis, Marios</au><au>Jenkins, Russell W</au><au>Gokhale, Prafulla C</au><au>Goldoni, Silvia</au><au>Pinzon-Ortiz, Maria</au><au>Hastings, William D</au><au>Hammerman, Peter S</au><au>Miret, Juan J</au><au>Paweletz, Cloud P</au><au>Barbie, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-01-19</date><risdate>2021</risdate><volume>131</volume><issue>2</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>33151910</pmid><doi>10.1172/JCI135038</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0512-2536</orcidid><orcidid>https://orcid.org/0000-0001-8271-8566</orcidid><orcidid>https://orcid.org/0000-0003-4008-386X</orcidid><orcidid>https://orcid.org/0000-0003-0346-5033</orcidid><orcidid>https://orcid.org/0000-0003-4391-6943</orcidid><orcidid>https://orcid.org/0000-0001-9510-0036</orcidid><orcidid>https://orcid.org/0000-0001-6110-2148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2021-01, Vol.131 (2), p.1-17 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7810472 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Antagonism Apoptosis Biomedical research Cancer Cancer cells Carcinogenesis Care and treatment CD8 antigen Cell death Cell Line, Tumor Collagen Cytokines Cytotoxicity Drug resistance Gene expression IAP protein Identification and classification Immunotherapy Interleukin 6 Lymphocytes Lymphocytes T Mesenchyme Mice Neoplasm Proteins - genetics Neoplasm Proteins - immunology Neoplasms, Experimental - genetics Neoplasms, Experimental - immunology Neoplasms, Experimental - therapy Oncology, Experimental PD-1 protein Programmed Cell Death 1 Receptor - antagonists & inhibitors Programmed Cell Death 1 Receptor - genetics Programmed Cell Death 1 Receptor - immunology RNA sequencing RNA-Seq Single-Cell Analysis Snail protein Spheroids Spheroids, Cellular - immunology Spheroids, Cellular - pathology Stem cell antigen 1 Stem cells Tumor necrosis factor-α Tumors |
title | Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20single-cell%20RNA%20sequencing%20identifies%20immunotherapy%20persister%20cells%20following%20PD-1%20blockade&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Sehgal,%20Kartik&rft.date=2021-01-19&rft.volume=131&rft.issue=2&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI135038&rft_dat=%3Cgale_pubme%3EA649350580%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509710922&rft_id=info:pmid/33151910&rft_galeid=A649350580&rfr_iscdi=true |