A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration

Chemoattractant gradients frequently guide migrating cells. To achieve the most directional signal, such gradients should be maintained with concentrations around the dissociation constant ( K d ) 1 – 6 of the chemoreceptor. Whether this actually occurs in animals is unknown. Here we investigate whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2020-03, Vol.22 (3), p.266-273
Hauptverfasser: Lau, Stephanie, Feitzinger, Anna, Venkiteswaran, Gayatri, Wang, John, Lewellis, Stephen W., Koplinski, Chad A., Peterson, Francis C., Volkman, Brian F., Meier-Schellersheim, Martin, Knaut, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 3
container_start_page 266
container_title Nature cell biology
container_volume 22
creator Lau, Stephanie
Feitzinger, Anna
Venkiteswaran, Gayatri
Wang, John
Lewellis, Stephen W.
Koplinski, Chad A.
Peterson, Francis C.
Volkman, Brian F.
Meier-Schellersheim, Martin
Knaut, Holger
description Chemoattractant gradients frequently guide migrating cells. To achieve the most directional signal, such gradients should be maintained with concentrations around the dissociation constant ( K d ) 1 – 6 of the chemoreceptor. Whether this actually occurs in animals is unknown. Here we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range to achieve robust migration. We find that the Cxcl12 (also known as Sdf1) attractant gradient ranges from 0 to 12 nM, values similar to the 3.4 nM K d of its receptor Cxcr4. When we increase the K d of Cxcl12 for Cxcr4, primordium migration is less directional. Furthermore, a negative-feedback loop between Cxcl12 and its clearance receptor Ackr3 (also known as Cxcr7) regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of the cytoplasmic tail of Ackr3 also results in less directional primordium migration. Thus, directed migration of the primordium is dependent on a close match between the Cxcl12 concentration and the K d of Cxcl12 for Cxcr4, which is maintained by buffering of the chemokine levels. Quantitative modelling confirms the plausibility of this mechanism. We anticipate that buffering of attractant concentration is a general mechanism for ensuring robust cell migration. Lau et al. quantify endogenous concentrations of the chemokine Cxcl12 and its binding affinity for its cognate receptor Cxcr4 in zebrafish embryos, uncovering a negative-feedback loop governing directional cell migration in vivo.
doi_str_mv 10.1038/s41556-020-0465-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7809593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618256940</galeid><sourcerecordid>A618256940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-5140a321917efeac1ae4933551424702d3e437a347463b055d922a2be4a0c4ed3</originalsourceid><addsrcrecordid>eNp1kl1r1UAQhhdRbD36A7yRgDd6kXY_s8mNcCi2FgpC1etls5mk2ybZ425S9N93QvrhESWEbGaemX1neAl5y-gRo6I8TpIpVeSU05zKQuXyGTlkUhe5LHT1fDljUIuKH5BXKV1TyqSk-iU5EJxKznR1SOptNkJnJ38LeQvQ1NbdZH0Iu2ywfpzwTVnYTX6wfeauYAg3foTMhdHBOEWsCwi0IWaNj-CW3wWEvs8G36351-RFa_sEb-6_G_Lj9PP3ky_5xdez85PtRe4KoadcMUmt4KxiGlqwjlmQlRAK41xqyhsBUmgrpJaFqKlSTcW55TVIS52ERmzIp7Xvbq4HaFaBvdlFFB9_m2C92c-M_sp04dboklYKr9qQD_cNYvg5Q5rM4NMyix0hzMlwoYQqNQpE9P1f6HWYI86-UJqXBUfRT1RnezB-bAPe65amZluwkquikhSpo39Q-DQweNw0tB7jewUf9wqQmeDX1Nk5JXP-7XKfZSvrYkgpQvu4D0bNYiKzmsigicxiIrPIfvfnIh8rHlyDAF-BhKmxg_g0_f-73gERlNCi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372862424</pqid></control><display><type>article</type><title>A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lau, Stephanie ; Feitzinger, Anna ; Venkiteswaran, Gayatri ; Wang, John ; Lewellis, Stephen W. ; Koplinski, Chad A. ; Peterson, Francis C. ; Volkman, Brian F. ; Meier-Schellersheim, Martin ; Knaut, Holger</creator><creatorcontrib>Lau, Stephanie ; Feitzinger, Anna ; Venkiteswaran, Gayatri ; Wang, John ; Lewellis, Stephen W. ; Koplinski, Chad A. ; Peterson, Francis C. ; Volkman, Brian F. ; Meier-Schellersheim, Martin ; Knaut, Holger</creatorcontrib><description>Chemoattractant gradients frequently guide migrating cells. To achieve the most directional signal, such gradients should be maintained with concentrations around the dissociation constant ( K d ) 1 – 6 of the chemoreceptor. Whether this actually occurs in animals is unknown. Here we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range to achieve robust migration. We find that the Cxcl12 (also known as Sdf1) attractant gradient ranges from 0 to 12 nM, values similar to the 3.4 nM K d of its receptor Cxcr4. When we increase the K d of Cxcl12 for Cxcr4, primordium migration is less directional. Furthermore, a negative-feedback loop between Cxcl12 and its clearance receptor Ackr3 (also known as Cxcr7) regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of the cytoplasmic tail of Ackr3 also results in less directional primordium migration. Thus, directed migration of the primordium is dependent on a close match between the Cxcl12 concentration and the K d of Cxcl12 for Cxcr4, which is maintained by buffering of the chemokine levels. Quantitative modelling confirms the plausibility of this mechanism. We anticipate that buffering of attractant concentration is a general mechanism for ensuring robust cell migration. Lau et al. quantify endogenous concentrations of the chemokine Cxcl12 and its binding affinity for its cognate receptor Cxcr4 in zebrafish embryos, uncovering a negative-feedback loop governing directional cell migration in vivo.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-020-0465-4</identifier><identifier>PMID: 32042179</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/35 ; 631/136 ; 631/80/84/1372 ; 631/80/84/2334 ; 631/80/86/820 ; 64 ; 64/116 ; Animals ; Animals, Genetically Modified ; Biomedical and Life Sciences ; Buffers ; Cancer Research ; Cell adhesion &amp; migration ; Cell Biology ; Cell Line ; Cell migration ; Cell Movement ; Chemokine CXCL12 - metabolism ; Chemokines ; Chemokines - metabolism ; CXCL12 protein ; CXCR4 protein ; Danio rerio ; Developmental Biology ; Embryonic development ; Embryos ; Feedback ; Feedback loops ; Feedback, Physiological ; Health aspects ; Humans ; Lateral line ; Letter ; Life Sciences ; Negative feedback ; Phosphorylation ; Receptors, CXCR - metabolism ; Receptors, CXCR4 - metabolism ; Robustness ; SDF-1 protein ; Stem Cells ; Zebrafish ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - metabolism ; Zebrafish Proteins - metabolism</subject><ispartof>Nature cell biology, 2020-03, Vol.22 (3), p.266-273</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-5140a321917efeac1ae4933551424702d3e437a347463b055d922a2be4a0c4ed3</citedby><cites>FETCH-LOGICAL-c637t-5140a321917efeac1ae4933551424702d3e437a347463b055d922a2be4a0c4ed3</cites><orcidid>0000-0002-8754-6377 ; 0000-0002-8399-8720 ; 0000-0003-1352-8923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-020-0465-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-020-0465-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32042179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Stephanie</creatorcontrib><creatorcontrib>Feitzinger, Anna</creatorcontrib><creatorcontrib>Venkiteswaran, Gayatri</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Lewellis, Stephen W.</creatorcontrib><creatorcontrib>Koplinski, Chad A.</creatorcontrib><creatorcontrib>Peterson, Francis C.</creatorcontrib><creatorcontrib>Volkman, Brian F.</creatorcontrib><creatorcontrib>Meier-Schellersheim, Martin</creatorcontrib><creatorcontrib>Knaut, Holger</creatorcontrib><title>A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Chemoattractant gradients frequently guide migrating cells. To achieve the most directional signal, such gradients should be maintained with concentrations around the dissociation constant ( K d ) 1 – 6 of the chemoreceptor. Whether this actually occurs in animals is unknown. Here we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range to achieve robust migration. We find that the Cxcl12 (also known as Sdf1) attractant gradient ranges from 0 to 12 nM, values similar to the 3.4 nM K d of its receptor Cxcr4. When we increase the K d of Cxcl12 for Cxcr4, primordium migration is less directional. Furthermore, a negative-feedback loop between Cxcl12 and its clearance receptor Ackr3 (also known as Cxcr7) regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of the cytoplasmic tail of Ackr3 also results in less directional primordium migration. Thus, directed migration of the primordium is dependent on a close match between the Cxcl12 concentration and the K d of Cxcl12 for Cxcr4, which is maintained by buffering of the chemokine levels. Quantitative modelling confirms the plausibility of this mechanism. We anticipate that buffering of attractant concentration is a general mechanism for ensuring robust cell migration. Lau et al. quantify endogenous concentrations of the chemokine Cxcl12 and its binding affinity for its cognate receptor Cxcr4 in zebrafish embryos, uncovering a negative-feedback loop governing directional cell migration in vivo.</description><subject>14</subject><subject>14/35</subject><subject>631/136</subject><subject>631/80/84/1372</subject><subject>631/80/84/2334</subject><subject>631/80/86/820</subject><subject>64</subject><subject>64/116</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biomedical and Life Sciences</subject><subject>Buffers</subject><subject>Cancer Research</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>Chemokines</subject><subject>Chemokines - metabolism</subject><subject>CXCL12 protein</subject><subject>CXCR4 protein</subject><subject>Danio rerio</subject><subject>Developmental Biology</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Feedback</subject><subject>Feedback loops</subject><subject>Feedback, Physiological</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Lateral line</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Negative feedback</subject><subject>Phosphorylation</subject><subject>Receptors, CXCR - metabolism</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>Robustness</subject><subject>SDF-1 protein</subject><subject>Stem Cells</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kl1r1UAQhhdRbD36A7yRgDd6kXY_s8mNcCi2FgpC1etls5mk2ybZ425S9N93QvrhESWEbGaemX1neAl5y-gRo6I8TpIpVeSU05zKQuXyGTlkUhe5LHT1fDljUIuKH5BXKV1TyqSk-iU5EJxKznR1SOptNkJnJ38LeQvQ1NbdZH0Iu2ywfpzwTVnYTX6wfeauYAg3foTMhdHBOEWsCwi0IWaNj-CW3wWEvs8G36351-RFa_sEb-6_G_Lj9PP3ky_5xdez85PtRe4KoadcMUmt4KxiGlqwjlmQlRAK41xqyhsBUmgrpJaFqKlSTcW55TVIS52ERmzIp7Xvbq4HaFaBvdlFFB9_m2C92c-M_sp04dboklYKr9qQD_cNYvg5Q5rM4NMyix0hzMlwoYQqNQpE9P1f6HWYI86-UJqXBUfRT1RnezB-bAPe65amZluwkquikhSpo39Q-DQweNw0tB7jewUf9wqQmeDX1Nk5JXP-7XKfZSvrYkgpQvu4D0bNYiKzmsigicxiIrPIfvfnIh8rHlyDAF-BhKmxg_g0_f-73gERlNCi</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Lau, Stephanie</creator><creator>Feitzinger, Anna</creator><creator>Venkiteswaran, Gayatri</creator><creator>Wang, John</creator><creator>Lewellis, Stephen W.</creator><creator>Koplinski, Chad A.</creator><creator>Peterson, Francis C.</creator><creator>Volkman, Brian F.</creator><creator>Meier-Schellersheim, Martin</creator><creator>Knaut, Holger</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8754-6377</orcidid><orcidid>https://orcid.org/0000-0002-8399-8720</orcidid><orcidid>https://orcid.org/0000-0003-1352-8923</orcidid></search><sort><creationdate>20200301</creationdate><title>A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration</title><author>Lau, Stephanie ; Feitzinger, Anna ; Venkiteswaran, Gayatri ; Wang, John ; Lewellis, Stephen W. ; Koplinski, Chad A. ; Peterson, Francis C. ; Volkman, Brian F. ; Meier-Schellersheim, Martin ; Knaut, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-5140a321917efeac1ae4933551424702d3e437a347463b055d922a2be4a0c4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14</topic><topic>14/35</topic><topic>631/136</topic><topic>631/80/84/1372</topic><topic>631/80/84/2334</topic><topic>631/80/86/820</topic><topic>64</topic><topic>64/116</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biomedical and Life Sciences</topic><topic>Buffers</topic><topic>Cancer Research</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>Chemokines</topic><topic>Chemokines - metabolism</topic><topic>CXCL12 protein</topic><topic>CXCR4 protein</topic><topic>Danio rerio</topic><topic>Developmental Biology</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Feedback</topic><topic>Feedback loops</topic><topic>Feedback, Physiological</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Lateral line</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Negative feedback</topic><topic>Phosphorylation</topic><topic>Receptors, CXCR - metabolism</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>Robustness</topic><topic>SDF-1 protein</topic><topic>Stem Cells</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Stephanie</creatorcontrib><creatorcontrib>Feitzinger, Anna</creatorcontrib><creatorcontrib>Venkiteswaran, Gayatri</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Lewellis, Stephen W.</creatorcontrib><creatorcontrib>Koplinski, Chad A.</creatorcontrib><creatorcontrib>Peterson, Francis C.</creatorcontrib><creatorcontrib>Volkman, Brian F.</creatorcontrib><creatorcontrib>Meier-Schellersheim, Martin</creatorcontrib><creatorcontrib>Knaut, Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Stephanie</au><au>Feitzinger, Anna</au><au>Venkiteswaran, Gayatri</au><au>Wang, John</au><au>Lewellis, Stephen W.</au><au>Koplinski, Chad A.</au><au>Peterson, Francis C.</au><au>Volkman, Brian F.</au><au>Meier-Schellersheim, Martin</au><au>Knaut, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>266</spage><epage>273</epage><pages>266-273</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Chemoattractant gradients frequently guide migrating cells. To achieve the most directional signal, such gradients should be maintained with concentrations around the dissociation constant ( K d ) 1 – 6 of the chemoreceptor. Whether this actually occurs in animals is unknown. Here we investigate whether a moving tissue, the zebrafish posterior lateral line primordium, buffers its attractant in this concentration range to achieve robust migration. We find that the Cxcl12 (also known as Sdf1) attractant gradient ranges from 0 to 12 nM, values similar to the 3.4 nM K d of its receptor Cxcr4. When we increase the K d of Cxcl12 for Cxcr4, primordium migration is less directional. Furthermore, a negative-feedback loop between Cxcl12 and its clearance receptor Ackr3 (also known as Cxcr7) regulates the Cxcl12 concentrations. Breaking this negative feedback by blocking the phosphorylation of the cytoplasmic tail of Ackr3 also results in less directional primordium migration. Thus, directed migration of the primordium is dependent on a close match between the Cxcl12 concentration and the K d of Cxcl12 for Cxcr4, which is maintained by buffering of the chemokine levels. Quantitative modelling confirms the plausibility of this mechanism. We anticipate that buffering of attractant concentration is a general mechanism for ensuring robust cell migration. Lau et al. quantify endogenous concentrations of the chemokine Cxcl12 and its binding affinity for its cognate receptor Cxcr4 in zebrafish embryos, uncovering a negative-feedback loop governing directional cell migration in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32042179</pmid><doi>10.1038/s41556-020-0465-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8754-6377</orcidid><orcidid>https://orcid.org/0000-0002-8399-8720</orcidid><orcidid>https://orcid.org/0000-0003-1352-8923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2020-03, Vol.22 (3), p.266-273
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7809593
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 14
14/35
631/136
631/80/84/1372
631/80/84/2334
631/80/86/820
64
64/116
Animals
Animals, Genetically Modified
Biomedical and Life Sciences
Buffers
Cancer Research
Cell adhesion & migration
Cell Biology
Cell Line
Cell migration
Cell Movement
Chemokine CXCL12 - metabolism
Chemokines
Chemokines - metabolism
CXCL12 protein
CXCR4 protein
Danio rerio
Developmental Biology
Embryonic development
Embryos
Feedback
Feedback loops
Feedback, Physiological
Health aspects
Humans
Lateral line
Letter
Life Sciences
Negative feedback
Phosphorylation
Receptors, CXCR - metabolism
Receptors, CXCR4 - metabolism
Robustness
SDF-1 protein
Stem Cells
Zebrafish
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - metabolism
Zebrafish Proteins - metabolism
title A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20negative-feedback%20loop%20maintains%20optimal%20chemokine%20concentrations%20for%20directional%20cell%20migration&rft.jtitle=Nature%20cell%20biology&rft.au=Lau,%20Stephanie&rft.date=2020-03-01&rft.volume=22&rft.issue=3&rft.spage=266&rft.epage=273&rft.pages=266-273&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-020-0465-4&rft_dat=%3Cgale_pubme%3EA618256940%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372862424&rft_id=info:pmid/32042179&rft_galeid=A618256940&rfr_iscdi=true