Morphing electronics enable neuromodulation in growing tissue
Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additi...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2020-09, Vol.38 (9), p.1031-1036 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1036 |
---|---|
container_issue | 9 |
container_start_page | 1031 |
container_title | Nature biotechnology |
container_volume | 38 |
creator | Liu, Yuxin Li, Jinxing Song, Shang Kang, Jiheong Tsao, Yuchi Chen, Shucheng Mottini, Vittorio McConnell, Kelly Xu, Wenhui Zheng, Yu-Qing Tok, Jeffrey B.-H. George, Paul M. Bao, Zhenan |
description | Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals. |
doi_str_mv | 10.1038/s41587-020-0495-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7805559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634552819</galeid><sourcerecordid>A634552819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</originalsourceid><addsrcrecordid>eNqNkm1r1jAUhosobnv0B_hFCoIo2Jn3tB8UxvBlMBn49jWk6WmfjDZ5TFqn_96Uzm0VJxJIQs51n5zDubPsEUaHGNHyZWSYl7JABBWIVbwgd7J9zJkosKjE3XRHcxRzsZcdxHiOEBJMiPvZHiUUU1zR_ezVBx92W-u6HHowY_DOmpiD03UPuYMp-ME3U69H611uXd4FfzHTo41xggfZvVb3ER5enpvsy9s3n4_fF6dn706Oj04LI4UcCy1bUrdMm4qTFgHTTPAKaqgbgmkjGyqkRNxwWkrJpUB1qZGUlSCUM9qQmm6y10ve3VQP0BhwY9C92gU76PBTeW3VOuLsVnX-u5Il4pxXKcGzywTBf5sgjmqw0UDfawd-iorQiiIqqWQJffIHeu6n4FJ7irDUDq04Qv-mGCIYM4avqU73oKxrfarOzF-rI0EZ56TEc3GHf6HSamCwxjtobXpfCZ6uBIkZ4cfY6SlGtQaf3w6efPr4_-zZ1zX74gZbT9E6iGmLttuOcZGscLzgJvgYA7RXk8NIzU5Wi5NVcrKanZzmscke3xz5leK3dRNAFiCmkOsgXE_g9qy_ALK_-Nc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440211441</pqid></control><display><type>article</type><title>Morphing electronics enable neuromodulation in growing tissue</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</creator><creatorcontrib>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</creatorcontrib><description>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0495-2</identifier><identifier>PMID: 32313193</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>639/166/985 ; 639/301/1005/1007 ; 639/301/923/1028 ; Adaptive control ; Agriculture ; Animals ; Biocompatible Materials - chemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedical materials ; Biomedicine ; Biotechnology ; Care and treatment ; Children ; Computer applications ; Design and construction ; Electrical stimuli ; Electronic devices ; Electronic equipment ; Electronics ; Electronics, Medical - instrumentation ; Electronics, Medical - methods ; Growth ; Health aspects ; Implantable Neurostimulators ; Implantation ; Implants ; Implants, Artificial ; Infants ; Letter ; Life Sciences ; Methods ; Morphing ; Nerves ; Nervous system ; Nervous system diseases ; Nervous tissues ; Neural prostheses ; Neural stimulation ; Neuromodulation ; Neurophysiology ; Pediatrics ; Polymers - chemistry ; Prosthesis ; Rats ; Sciatic Nerve - physiology ; Sensors ; Surgery ; Surgical implants ; Tissues ; Viscoelastic Substances - chemistry</subject><ispartof>Nature biotechnology, 2020-09, Vol.38 (9), p.1031-1036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</citedby><cites>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</cites><orcidid>0000-0002-0972-1715 ; 0000-0002-2794-0663 ; 0000-0001-8552-3721 ; 0000-0003-4446-5494 ; 0000-0003-0623-9402 ; 0000-0002-1080-098X ; 0000-0002-8637-5086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Song, Shang</creatorcontrib><creatorcontrib>Kang, Jiheong</creatorcontrib><creatorcontrib>Tsao, Yuchi</creatorcontrib><creatorcontrib>Chen, Shucheng</creatorcontrib><creatorcontrib>Mottini, Vittorio</creatorcontrib><creatorcontrib>McConnell, Kelly</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Zheng, Yu-Qing</creatorcontrib><creatorcontrib>Tok, Jeffrey B.-H.</creatorcontrib><creatorcontrib>George, Paul M.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><title>Morphing electronics enable neuromodulation in growing tissue</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</description><subject>639/166/985</subject><subject>639/301/1005/1007</subject><subject>639/301/923/1028</subject><subject>Adaptive control</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedical materials</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Care and treatment</subject><subject>Children</subject><subject>Computer applications</subject><subject>Design and construction</subject><subject>Electrical stimuli</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronics</subject><subject>Electronics, Medical - instrumentation</subject><subject>Electronics, Medical - methods</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Implantable Neurostimulators</subject><subject>Implantation</subject><subject>Implants</subject><subject>Implants, Artificial</subject><subject>Infants</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Morphing</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Nervous system diseases</subject><subject>Nervous tissues</subject><subject>Neural prostheses</subject><subject>Neural stimulation</subject><subject>Neuromodulation</subject><subject>Neurophysiology</subject><subject>Pediatrics</subject><subject>Polymers - chemistry</subject><subject>Prosthesis</subject><subject>Rats</subject><subject>Sciatic Nerve - physiology</subject><subject>Sensors</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Tissues</subject><subject>Viscoelastic Substances - chemistry</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1jAUhosobnv0B_hFCoIo2Jn3tB8UxvBlMBn49jWk6WmfjDZ5TFqn_96Uzm0VJxJIQs51n5zDubPsEUaHGNHyZWSYl7JABBWIVbwgd7J9zJkosKjE3XRHcxRzsZcdxHiOEBJMiPvZHiUUU1zR_ezVBx92W-u6HHowY_DOmpiD03UPuYMp-ME3U69H611uXd4FfzHTo41xggfZvVb3ER5enpvsy9s3n4_fF6dn706Oj04LI4UcCy1bUrdMm4qTFgHTTPAKaqgbgmkjGyqkRNxwWkrJpUB1qZGUlSCUM9qQmm6y10ve3VQP0BhwY9C92gU76PBTeW3VOuLsVnX-u5Il4pxXKcGzywTBf5sgjmqw0UDfawd-iorQiiIqqWQJffIHeu6n4FJ7irDUDq04Qv-mGCIYM4avqU73oKxrfarOzF-rI0EZ56TEc3GHf6HSamCwxjtobXpfCZ6uBIkZ4cfY6SlGtQaf3w6efPr4_-zZ1zX74gZbT9E6iGmLttuOcZGscLzgJvgYA7RXk8NIzU5Wi5NVcrKanZzmscke3xz5leK3dRNAFiCmkOsgXE_g9qy_ALK_-Nc</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Yuxin</creator><creator>Li, Jinxing</creator><creator>Song, Shang</creator><creator>Kang, Jiheong</creator><creator>Tsao, Yuchi</creator><creator>Chen, Shucheng</creator><creator>Mottini, Vittorio</creator><creator>McConnell, Kelly</creator><creator>Xu, Wenhui</creator><creator>Zheng, Yu-Qing</creator><creator>Tok, Jeffrey B.-H.</creator><creator>George, Paul M.</creator><creator>Bao, Zhenan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-2794-0663</orcidid><orcidid>https://orcid.org/0000-0001-8552-3721</orcidid><orcidid>https://orcid.org/0000-0003-4446-5494</orcidid><orcidid>https://orcid.org/0000-0003-0623-9402</orcidid><orcidid>https://orcid.org/0000-0002-1080-098X</orcidid><orcidid>https://orcid.org/0000-0002-8637-5086</orcidid></search><sort><creationdate>20200901</creationdate><title>Morphing electronics enable neuromodulation in growing tissue</title><author>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/985</topic><topic>639/301/1005/1007</topic><topic>639/301/923/1028</topic><topic>Adaptive control</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedical materials</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Care and treatment</topic><topic>Children</topic><topic>Computer applications</topic><topic>Design and construction</topic><topic>Electrical stimuli</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronics</topic><topic>Electronics, Medical - instrumentation</topic><topic>Electronics, Medical - methods</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Implantable Neurostimulators</topic><topic>Implantation</topic><topic>Implants</topic><topic>Implants, Artificial</topic><topic>Infants</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Morphing</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Nervous system diseases</topic><topic>Nervous tissues</topic><topic>Neural prostheses</topic><topic>Neural stimulation</topic><topic>Neuromodulation</topic><topic>Neurophysiology</topic><topic>Pediatrics</topic><topic>Polymers - chemistry</topic><topic>Prosthesis</topic><topic>Rats</topic><topic>Sciatic Nerve - physiology</topic><topic>Sensors</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Tissues</topic><topic>Viscoelastic Substances - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Song, Shang</creatorcontrib><creatorcontrib>Kang, Jiheong</creatorcontrib><creatorcontrib>Tsao, Yuchi</creatorcontrib><creatorcontrib>Chen, Shucheng</creatorcontrib><creatorcontrib>Mottini, Vittorio</creatorcontrib><creatorcontrib>McConnell, Kelly</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Zheng, Yu-Qing</creatorcontrib><creatorcontrib>Tok, Jeffrey B.-H.</creatorcontrib><creatorcontrib>George, Paul M.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuxin</au><au>Li, Jinxing</au><au>Song, Shang</au><au>Kang, Jiheong</au><au>Tsao, Yuchi</au><au>Chen, Shucheng</au><au>Mottini, Vittorio</au><au>McConnell, Kelly</au><au>Xu, Wenhui</au><au>Zheng, Yu-Qing</au><au>Tok, Jeffrey B.-H.</au><au>George, Paul M.</au><au>Bao, Zhenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphing electronics enable neuromodulation in growing tissue</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>38</volume><issue>9</issue><spage>1031</spage><epage>1036</epage><pages>1031-1036</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases
1
–
3
. However, their fixed dimensions cannot accommodate rapid tissue growth
4
,
5
and may impair development
6
. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications
6
–
8
. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32313193</pmid><doi>10.1038/s41587-020-0495-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-2794-0663</orcidid><orcidid>https://orcid.org/0000-0001-8552-3721</orcidid><orcidid>https://orcid.org/0000-0003-4446-5494</orcidid><orcidid>https://orcid.org/0000-0003-0623-9402</orcidid><orcidid>https://orcid.org/0000-0002-1080-098X</orcidid><orcidid>https://orcid.org/0000-0002-8637-5086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2020-09, Vol.38 (9), p.1031-1036 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7805559 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 639/166/985 639/301/1005/1007 639/301/923/1028 Adaptive control Agriculture Animals Biocompatible Materials - chemistry Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedical materials Biomedicine Biotechnology Care and treatment Children Computer applications Design and construction Electrical stimuli Electronic devices Electronic equipment Electronics Electronics, Medical - instrumentation Electronics, Medical - methods Growth Health aspects Implantable Neurostimulators Implantation Implants Implants, Artificial Infants Letter Life Sciences Methods Morphing Nerves Nervous system Nervous system diseases Nervous tissues Neural prostheses Neural stimulation Neuromodulation Neurophysiology Pediatrics Polymers - chemistry Prosthesis Rats Sciatic Nerve - physiology Sensors Surgery Surgical implants Tissues Viscoelastic Substances - chemistry |
title | Morphing electronics enable neuromodulation in growing tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphing%20electronics%20enable%20neuromodulation%20in%20growing%20tissue&rft.jtitle=Nature%20biotechnology&rft.au=Liu,%20Yuxin&rft.date=2020-09-01&rft.volume=38&rft.issue=9&rft.spage=1031&rft.epage=1036&rft.pages=1031-1036&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0495-2&rft_dat=%3Cgale_pubme%3EA634552819%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440211441&rft_id=info:pmid/32313193&rft_galeid=A634552819&rfr_iscdi=true |