Morphing electronics enable neuromodulation in growing tissue

Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2020-09, Vol.38 (9), p.1031-1036
Hauptverfasser: Liu, Yuxin, Li, Jinxing, Song, Shang, Kang, Jiheong, Tsao, Yuchi, Chen, Shucheng, Mottini, Vittorio, McConnell, Kelly, Xu, Wenhui, Zheng, Yu-Qing, Tok, Jeffrey B.-H., George, Paul M., Bao, Zhenan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 9
container_start_page 1031
container_title Nature biotechnology
container_volume 38
creator Liu, Yuxin
Li, Jinxing
Song, Shang
Kang, Jiheong
Tsao, Yuchi
Chen, Shucheng
Mottini, Vittorio
McConnell, Kelly
Xu, Wenhui
Zheng, Yu-Qing
Tok, Jeffrey B.-H.
George, Paul M.
Bao, Zhenan
description Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications 6 – 8 . Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine. Viscoplastic electronic devices adapt as nerves enlarge in growing animals.
doi_str_mv 10.1038/s41587-020-0495-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7805559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A634552819</galeid><sourcerecordid>A634552819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</originalsourceid><addsrcrecordid>eNqNkm1r1jAUhosobnv0B_hFCoIo2Jn3tB8UxvBlMBn49jWk6WmfjDZ5TFqn_96Uzm0VJxJIQs51n5zDubPsEUaHGNHyZWSYl7JABBWIVbwgd7J9zJkosKjE3XRHcxRzsZcdxHiOEBJMiPvZHiUUU1zR_ezVBx92W-u6HHowY_DOmpiD03UPuYMp-ME3U69H611uXd4FfzHTo41xggfZvVb3ER5enpvsy9s3n4_fF6dn706Oj04LI4UcCy1bUrdMm4qTFgHTTPAKaqgbgmkjGyqkRNxwWkrJpUB1qZGUlSCUM9qQmm6y10ve3VQP0BhwY9C92gU76PBTeW3VOuLsVnX-u5Il4pxXKcGzywTBf5sgjmqw0UDfawd-iorQiiIqqWQJffIHeu6n4FJ7irDUDq04Qv-mGCIYM4avqU73oKxrfarOzF-rI0EZ56TEc3GHf6HSamCwxjtobXpfCZ6uBIkZ4cfY6SlGtQaf3w6efPr4_-zZ1zX74gZbT9E6iGmLttuOcZGscLzgJvgYA7RXk8NIzU5Wi5NVcrKanZzmscke3xz5leK3dRNAFiCmkOsgXE_g9qy_ALK_-Nc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440211441</pqid></control><display><type>article</type><title>Morphing electronics enable neuromodulation in growing tissue</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</creator><creatorcontrib>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</creatorcontrib><description>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications 6 – 8 . Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine. Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0495-2</identifier><identifier>PMID: 32313193</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>639/166/985 ; 639/301/1005/1007 ; 639/301/923/1028 ; Adaptive control ; Agriculture ; Animals ; Biocompatible Materials - chemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedical materials ; Biomedicine ; Biotechnology ; Care and treatment ; Children ; Computer applications ; Design and construction ; Electrical stimuli ; Electronic devices ; Electronic equipment ; Electronics ; Electronics, Medical - instrumentation ; Electronics, Medical - methods ; Growth ; Health aspects ; Implantable Neurostimulators ; Implantation ; Implants ; Implants, Artificial ; Infants ; Letter ; Life Sciences ; Methods ; Morphing ; Nerves ; Nervous system ; Nervous system diseases ; Nervous tissues ; Neural prostheses ; Neural stimulation ; Neuromodulation ; Neurophysiology ; Pediatrics ; Polymers - chemistry ; Prosthesis ; Rats ; Sciatic Nerve - physiology ; Sensors ; Surgery ; Surgical implants ; Tissues ; Viscoelastic Substances - chemistry</subject><ispartof>Nature biotechnology, 2020-09, Vol.38 (9), p.1031-1036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</citedby><cites>FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</cites><orcidid>0000-0002-0972-1715 ; 0000-0002-2794-0663 ; 0000-0001-8552-3721 ; 0000-0003-4446-5494 ; 0000-0003-0623-9402 ; 0000-0002-1080-098X ; 0000-0002-8637-5086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Song, Shang</creatorcontrib><creatorcontrib>Kang, Jiheong</creatorcontrib><creatorcontrib>Tsao, Yuchi</creatorcontrib><creatorcontrib>Chen, Shucheng</creatorcontrib><creatorcontrib>Mottini, Vittorio</creatorcontrib><creatorcontrib>McConnell, Kelly</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Zheng, Yu-Qing</creatorcontrib><creatorcontrib>Tok, Jeffrey B.-H.</creatorcontrib><creatorcontrib>George, Paul M.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><title>Morphing electronics enable neuromodulation in growing tissue</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications 6 – 8 . Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine. Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</description><subject>639/166/985</subject><subject>639/301/1005/1007</subject><subject>639/301/923/1028</subject><subject>Adaptive control</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedical materials</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Care and treatment</subject><subject>Children</subject><subject>Computer applications</subject><subject>Design and construction</subject><subject>Electrical stimuli</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronics</subject><subject>Electronics, Medical - instrumentation</subject><subject>Electronics, Medical - methods</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Implantable Neurostimulators</subject><subject>Implantation</subject><subject>Implants</subject><subject>Implants, Artificial</subject><subject>Infants</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Morphing</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Nervous system diseases</subject><subject>Nervous tissues</subject><subject>Neural prostheses</subject><subject>Neural stimulation</subject><subject>Neuromodulation</subject><subject>Neurophysiology</subject><subject>Pediatrics</subject><subject>Polymers - chemistry</subject><subject>Prosthesis</subject><subject>Rats</subject><subject>Sciatic Nerve - physiology</subject><subject>Sensors</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Tissues</subject><subject>Viscoelastic Substances - chemistry</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1jAUhosobnv0B_hFCoIo2Jn3tB8UxvBlMBn49jWk6WmfjDZ5TFqn_96Uzm0VJxJIQs51n5zDubPsEUaHGNHyZWSYl7JABBWIVbwgd7J9zJkosKjE3XRHcxRzsZcdxHiOEBJMiPvZHiUUU1zR_ezVBx92W-u6HHowY_DOmpiD03UPuYMp-ME3U69H611uXd4FfzHTo41xggfZvVb3ER5enpvsy9s3n4_fF6dn706Oj04LI4UcCy1bUrdMm4qTFgHTTPAKaqgbgmkjGyqkRNxwWkrJpUB1qZGUlSCUM9qQmm6y10ve3VQP0BhwY9C92gU76PBTeW3VOuLsVnX-u5Il4pxXKcGzywTBf5sgjmqw0UDfawd-iorQiiIqqWQJffIHeu6n4FJ7irDUDq04Qv-mGCIYM4avqU73oKxrfarOzF-rI0EZ56TEc3GHf6HSamCwxjtobXpfCZ6uBIkZ4cfY6SlGtQaf3w6efPr4_-zZ1zX74gZbT9E6iGmLttuOcZGscLzgJvgYA7RXk8NIzU5Wi5NVcrKanZzmscke3xz5leK3dRNAFiCmkOsgXE_g9qy_ALK_-Nc</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Yuxin</creator><creator>Li, Jinxing</creator><creator>Song, Shang</creator><creator>Kang, Jiheong</creator><creator>Tsao, Yuchi</creator><creator>Chen, Shucheng</creator><creator>Mottini, Vittorio</creator><creator>McConnell, Kelly</creator><creator>Xu, Wenhui</creator><creator>Zheng, Yu-Qing</creator><creator>Tok, Jeffrey B.-H.</creator><creator>George, Paul M.</creator><creator>Bao, Zhenan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-2794-0663</orcidid><orcidid>https://orcid.org/0000-0001-8552-3721</orcidid><orcidid>https://orcid.org/0000-0003-4446-5494</orcidid><orcidid>https://orcid.org/0000-0003-0623-9402</orcidid><orcidid>https://orcid.org/0000-0002-1080-098X</orcidid><orcidid>https://orcid.org/0000-0002-8637-5086</orcidid></search><sort><creationdate>20200901</creationdate><title>Morphing electronics enable neuromodulation in growing tissue</title><author>Liu, Yuxin ; Li, Jinxing ; Song, Shang ; Kang, Jiheong ; Tsao, Yuchi ; Chen, Shucheng ; Mottini, Vittorio ; McConnell, Kelly ; Xu, Wenhui ; Zheng, Yu-Qing ; Tok, Jeffrey B.-H. ; George, Paul M. ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-a7f2bf4ac952f0e4a4659ebebd213d7d367705c538775760b8a0779623543d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/985</topic><topic>639/301/1005/1007</topic><topic>639/301/923/1028</topic><topic>Adaptive control</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedical materials</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Care and treatment</topic><topic>Children</topic><topic>Computer applications</topic><topic>Design and construction</topic><topic>Electrical stimuli</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronics</topic><topic>Electronics, Medical - instrumentation</topic><topic>Electronics, Medical - methods</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Implantable Neurostimulators</topic><topic>Implantation</topic><topic>Implants</topic><topic>Implants, Artificial</topic><topic>Infants</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Morphing</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Nervous system diseases</topic><topic>Nervous tissues</topic><topic>Neural prostheses</topic><topic>Neural stimulation</topic><topic>Neuromodulation</topic><topic>Neurophysiology</topic><topic>Pediatrics</topic><topic>Polymers - chemistry</topic><topic>Prosthesis</topic><topic>Rats</topic><topic>Sciatic Nerve - physiology</topic><topic>Sensors</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Tissues</topic><topic>Viscoelastic Substances - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Jinxing</creatorcontrib><creatorcontrib>Song, Shang</creatorcontrib><creatorcontrib>Kang, Jiheong</creatorcontrib><creatorcontrib>Tsao, Yuchi</creatorcontrib><creatorcontrib>Chen, Shucheng</creatorcontrib><creatorcontrib>Mottini, Vittorio</creatorcontrib><creatorcontrib>McConnell, Kelly</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Zheng, Yu-Qing</creatorcontrib><creatorcontrib>Tok, Jeffrey B.-H.</creatorcontrib><creatorcontrib>George, Paul M.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuxin</au><au>Li, Jinxing</au><au>Song, Shang</au><au>Kang, Jiheong</au><au>Tsao, Yuchi</au><au>Chen, Shucheng</au><au>Mottini, Vittorio</au><au>McConnell, Kelly</au><au>Xu, Wenhui</au><au>Zheng, Yu-Qing</au><au>Tok, Jeffrey B.-H.</au><au>George, Paul M.</au><au>Bao, Zhenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphing electronics enable neuromodulation in growing tissue</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>38</volume><issue>9</issue><spage>1031</spage><epage>1036</epage><pages>1031-1036</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases 1 – 3 . However, their fixed dimensions cannot accommodate rapid tissue growth 4 , 5 and may impair development 6 . For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications 6 – 8 . Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine. Viscoplastic electronic devices adapt as nerves enlarge in growing animals.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32313193</pmid><doi>10.1038/s41587-020-0495-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-2794-0663</orcidid><orcidid>https://orcid.org/0000-0001-8552-3721</orcidid><orcidid>https://orcid.org/0000-0003-4446-5494</orcidid><orcidid>https://orcid.org/0000-0003-0623-9402</orcidid><orcidid>https://orcid.org/0000-0002-1080-098X</orcidid><orcidid>https://orcid.org/0000-0002-8637-5086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2020-09, Vol.38 (9), p.1031-1036
issn 1087-0156
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7805559
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 639/166/985
639/301/1005/1007
639/301/923/1028
Adaptive control
Agriculture
Animals
Biocompatible Materials - chemistry
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedical materials
Biomedicine
Biotechnology
Care and treatment
Children
Computer applications
Design and construction
Electrical stimuli
Electronic devices
Electronic equipment
Electronics
Electronics, Medical - instrumentation
Electronics, Medical - methods
Growth
Health aspects
Implantable Neurostimulators
Implantation
Implants
Implants, Artificial
Infants
Letter
Life Sciences
Methods
Morphing
Nerves
Nervous system
Nervous system diseases
Nervous tissues
Neural prostheses
Neural stimulation
Neuromodulation
Neurophysiology
Pediatrics
Polymers - chemistry
Prosthesis
Rats
Sciatic Nerve - physiology
Sensors
Surgery
Surgical implants
Tissues
Viscoelastic Substances - chemistry
title Morphing electronics enable neuromodulation in growing tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphing%20electronics%20enable%20neuromodulation%20in%20growing%20tissue&rft.jtitle=Nature%20biotechnology&rft.au=Liu,%20Yuxin&rft.date=2020-09-01&rft.volume=38&rft.issue=9&rft.spage=1031&rft.epage=1036&rft.pages=1031-1036&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0495-2&rft_dat=%3Cgale_pubme%3EA634552819%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440211441&rft_id=info:pmid/32313193&rft_galeid=A634552819&rfr_iscdi=true