The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment

The Kelch-like ECH-associated protein (KEAP1)- Nuclear factor erythroid-derived 2-like 2 (encoded by the gene; NRF2) system attracts extensive interest from scientists in basic and clinical cancer research fields, as NRF2 exhibits activity as both an oncogene and tumor suppressor, depending on the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2020-12, Vol.13 (1), p.46
Hauptverfasser: Taguchi, Keiko, Yamamoto, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 46
container_title Cancers
container_volume 13
creator Taguchi, Keiko
Yamamoto, Masayuki
description The Kelch-like ECH-associated protein (KEAP1)- Nuclear factor erythroid-derived 2-like 2 (encoded by the gene; NRF2) system attracts extensive interest from scientists in basic and clinical cancer research fields, as NRF2 exhibits activity as both an oncogene and tumor suppressor, depending on the context. Especially unique and malignant, NRF2-addicted cancers exhibit high levels of NRF2 expression. Somatic mutations identified in the or genes of NRF2-addicted cancers cause the stabilization and accumulation of NRF2. NRF2-addicted cancers hijack the intrinsic roles that NRF2 plays in cytoprotection, including antioxidative and anti-electrophilic responses, as well as metabolic reprogramming, and acquire a marked advantage to survive under severe and limited microenvironments. Therefore, NRF2 inhibitors are expected to have therapeutic effects in patients with NRF2-addicted cancers. In contrast, NRF2 activation in host immune cells exerts significant suppression of cancer cell growth, indicating that NRF2 inducers also have the potential to be therapeutics for cancers. Thus, the KEAP1-NRF2 system makes a broad range of contributions to both cancer development and suppression. These observations thus demonstrate that both NRF2 inhibitors and inducers are useful for the treatment of cancers with high NRF2 activity.
doi_str_mv 10.3390/cancers13010046
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474359230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-51fa51304d11d4b11c0414f7db3eecfe33cb3cfc5e6b18db1ea79964fb1c1cdb3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEYhPszA1F4sKlLKnTpr2A0LQB4lMwzlGaumNTP0bSIu3fE2BMMF9syY9f23oJOeLsDCBlQ6Nrg9ZxYJwxEe-QfshkGMRxKnb_1D0ycG7BfABwGct90gMAGYUi6ZOL6RvS2_HlEw8enichfVm5FiuqHdX0vinRdKW2dKrtDFvaFHT0vZNOLeq2wro9JHuFLh0O1vmAvE7G09F1cPd4dTO6vAuMSGQbRLzQkT9U5JznIuPcMMFFIfMMEE2BACYDU5gI44wnecZRyzSNRZFxw42nDsj5j-6yyyrMjV9tdamWdl5pu1KNnqv_nXr-pmbNh5IyjRIpvMDpWsA27x26VlVzZ7AsdY1N51QoJCRpGkHs0ZMtdNF0tvbvfVECojQE5qnhD2Vs45zFYnMMZ-rLH7Xlj584_vvDhv91Az4BeaiLsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474359230</pqid></control><display><type>article</type><title>The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Taguchi, Keiko ; Yamamoto, Masayuki</creator><creatorcontrib>Taguchi, Keiko ; Yamamoto, Masayuki</creatorcontrib><description>The Kelch-like ECH-associated protein (KEAP1)- Nuclear factor erythroid-derived 2-like 2 (encoded by the gene; NRF2) system attracts extensive interest from scientists in basic and clinical cancer research fields, as NRF2 exhibits activity as both an oncogene and tumor suppressor, depending on the context. Especially unique and malignant, NRF2-addicted cancers exhibit high levels of NRF2 expression. Somatic mutations identified in the or genes of NRF2-addicted cancers cause the stabilization and accumulation of NRF2. NRF2-addicted cancers hijack the intrinsic roles that NRF2 plays in cytoprotection, including antioxidative and anti-electrophilic responses, as well as metabolic reprogramming, and acquire a marked advantage to survive under severe and limited microenvironments. Therefore, NRF2 inhibitors are expected to have therapeutic effects in patients with NRF2-addicted cancers. In contrast, NRF2 activation in host immune cells exerts significant suppression of cancer cell growth, indicating that NRF2 inducers also have the potential to be therapeutics for cancers. Thus, the KEAP1-NRF2 system makes a broad range of contributions to both cancer development and suppression. These observations thus demonstrate that both NRF2 inhibitors and inducers are useful for the treatment of cancers with high NRF2 activity.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13010046</identifier><identifier>PMID: 33375248</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Autophagy ; Cancer ; Cancer therapies ; Cell activation ; Cell cycle ; Cytokines ; Enzymes ; Gene expression ; Kinases ; Microenvironments ; NRF2 protein ; Phosphorylation ; Pollutants ; Proteins ; Review ; Transcription factors ; Tumor suppressor genes</subject><ispartof>Cancers, 2020-12, Vol.13 (1), p.46</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-51fa51304d11d4b11c0414f7db3eecfe33cb3cfc5e6b18db1ea79964fb1c1cdb3</citedby><cites>FETCH-LOGICAL-c487t-51fa51304d11d4b11c0414f7db3eecfe33cb3cfc5e6b18db1ea79964fb1c1cdb3</cites><orcidid>0000-0002-5798-0076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33375248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taguchi, Keiko</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><title>The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>The Kelch-like ECH-associated protein (KEAP1)- Nuclear factor erythroid-derived 2-like 2 (encoded by the gene; NRF2) system attracts extensive interest from scientists in basic and clinical cancer research fields, as NRF2 exhibits activity as both an oncogene and tumor suppressor, depending on the context. Especially unique and malignant, NRF2-addicted cancers exhibit high levels of NRF2 expression. Somatic mutations identified in the or genes of NRF2-addicted cancers cause the stabilization and accumulation of NRF2. NRF2-addicted cancers hijack the intrinsic roles that NRF2 plays in cytoprotection, including antioxidative and anti-electrophilic responses, as well as metabolic reprogramming, and acquire a marked advantage to survive under severe and limited microenvironments. Therefore, NRF2 inhibitors are expected to have therapeutic effects in patients with NRF2-addicted cancers. In contrast, NRF2 activation in host immune cells exerts significant suppression of cancer cell growth, indicating that NRF2 inducers also have the potential to be therapeutics for cancers. Thus, the KEAP1-NRF2 system makes a broad range of contributions to both cancer development and suppression. These observations thus demonstrate that both NRF2 inhibitors and inducers are useful for the treatment of cancers with high NRF2 activity.</description><subject>Autophagy</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cytokines</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Kinases</subject><subject>Microenvironments</subject><subject>NRF2 protein</subject><subject>Phosphorylation</subject><subject>Pollutants</subject><subject>Proteins</subject><subject>Review</subject><subject>Transcription factors</subject><subject>Tumor suppressor genes</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1PwzAMhiMEYhPszA1F4sKlLKnTpr2A0LQB4lMwzlGaumNTP0bSIu3fE2BMMF9syY9f23oJOeLsDCBlQ6Nrg9ZxYJwxEe-QfshkGMRxKnb_1D0ycG7BfABwGct90gMAGYUi6ZOL6RvS2_HlEw8enichfVm5FiuqHdX0vinRdKW2dKrtDFvaFHT0vZNOLeq2wro9JHuFLh0O1vmAvE7G09F1cPd4dTO6vAuMSGQbRLzQkT9U5JznIuPcMMFFIfMMEE2BACYDU5gI44wnecZRyzSNRZFxw42nDsj5j-6yyyrMjV9tdamWdl5pu1KNnqv_nXr-pmbNh5IyjRIpvMDpWsA27x26VlVzZ7AsdY1N51QoJCRpGkHs0ZMtdNF0tvbvfVECojQE5qnhD2Vs45zFYnMMZ-rLH7Xlj584_vvDhv91Az4BeaiLsg</recordid><startdate>20201226</startdate><enddate>20201226</enddate><creator>Taguchi, Keiko</creator><creator>Yamamoto, Masayuki</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5798-0076</orcidid></search><sort><creationdate>20201226</creationdate><title>The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment</title><author>Taguchi, Keiko ; Yamamoto, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-51fa51304d11d4b11c0414f7db3eecfe33cb3cfc5e6b18db1ea79964fb1c1cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autophagy</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cytokines</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Kinases</topic><topic>Microenvironments</topic><topic>NRF2 protein</topic><topic>Phosphorylation</topic><topic>Pollutants</topic><topic>Proteins</topic><topic>Review</topic><topic>Transcription factors</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taguchi, Keiko</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taguchi, Keiko</au><au>Yamamoto, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2020-12-26</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>46</spage><pages>46-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The Kelch-like ECH-associated protein (KEAP1)- Nuclear factor erythroid-derived 2-like 2 (encoded by the gene; NRF2) system attracts extensive interest from scientists in basic and clinical cancer research fields, as NRF2 exhibits activity as both an oncogene and tumor suppressor, depending on the context. Especially unique and malignant, NRF2-addicted cancers exhibit high levels of NRF2 expression. Somatic mutations identified in the or genes of NRF2-addicted cancers cause the stabilization and accumulation of NRF2. NRF2-addicted cancers hijack the intrinsic roles that NRF2 plays in cytoprotection, including antioxidative and anti-electrophilic responses, as well as metabolic reprogramming, and acquire a marked advantage to survive under severe and limited microenvironments. Therefore, NRF2 inhibitors are expected to have therapeutic effects in patients with NRF2-addicted cancers. In contrast, NRF2 activation in host immune cells exerts significant suppression of cancer cell growth, indicating that NRF2 inducers also have the potential to be therapeutics for cancers. Thus, the KEAP1-NRF2 system makes a broad range of contributions to both cancer development and suppression. These observations thus demonstrate that both NRF2 inhibitors and inducers are useful for the treatment of cancers with high NRF2 activity.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33375248</pmid><doi>10.3390/cancers13010046</doi><orcidid>https://orcid.org/0000-0002-5798-0076</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2020-12, Vol.13 (1), p.46
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795874
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Autophagy
Cancer
Cancer therapies
Cell activation
Cell cycle
Cytokines
Enzymes
Gene expression
Kinases
Microenvironments
NRF2 protein
Phosphorylation
Pollutants
Proteins
Review
Transcription factors
Tumor suppressor genes
title The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20KEAP1-NRF2%20System%20as%20a%20Molecular%20Target%20of%20Cancer%20Treatment&rft.jtitle=Cancers&rft.au=Taguchi,%20Keiko&rft.date=2020-12-26&rft.volume=13&rft.issue=1&rft.spage=46&rft.pages=46-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13010046&rft_dat=%3Cproquest_pubme%3E2474359230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474359230&rft_id=info:pmid/33375248&rfr_iscdi=true