Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm

Second heart sound (S2) splitting results from nonsimultaneous closures between aortic (A2) and pulmonic valves (P2) and may be used to detect timing differences (dyssynchrony) in relaxation between right (RV) and left ventricle (LV). However, overlap of A2 and P2 and the change in heart sound morph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological Reports 2021-01, Vol.9 (1), p.e14687-n/a
Hauptverfasser: Luo, Hongxing, Westphal, Philip, Shahmohammadi, Mehrdad, Heckman, Luuk I. B., Kuiper, Marion, Cornelussen, Richard N., Delhaas, Tammo, Prinzen, Frits W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e14687
container_title Physiological Reports
container_volume 9
creator Luo, Hongxing
Westphal, Philip
Shahmohammadi, Mehrdad
Heckman, Luuk I. B.
Kuiper, Marion
Cornelussen, Richard N.
Delhaas, Tammo
Prinzen, Frits W.
description Second heart sound (S2) splitting results from nonsimultaneous closures between aortic (A2) and pulmonic valves (P2) and may be used to detect timing differences (dyssynchrony) in relaxation between right (RV) and left ventricle (LV). However, overlap of A2 and P2 and the change in heart sound morphologies have complicated detection of the S2 splitting interval. This study introduces a novel S‐transform amplitude ridge tracking (START) algorithm for estimating S2 splitting interval and investigates the relationship between S2 splitting and interventricular relaxation dyssynchrony (IRD). First, the START algorithm was validated in a simulated model of heart sound. It showed small errors (
doi_str_mv 10.14814/phy2.14687
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7785055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A734071750</galeid><sourcerecordid>A734071750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5197-ff80926afed994aa72065d8b8dc72289e0e166dd250168615b5989d2bbf172b73</originalsourceid><addsrcrecordid>eNp9ksFrFTEQxhdBbKk9eZeAF0FeTbKbTfYilKJWKCiooKeQTWbfpmSTZ5J9snf_cPPe1lI9SA6ZJL_5Jh8zVfWM4AvSCNK83o0LLWEr-KPqlGJGNoLwbyfVeUq3GGOC67rDzZPqpK4bjGvRnla_PoMO3qARVMwohbnEaedsztZvkUpIeWS9sVrlEFEYyiFD3IPP0erZqYgm0KPyBXDILCktXo8x-AXN6aiAfNiDe6BpIIPONnik3DZEm8fpafV4UC7B-d1-Vn199_bL1fXm5uP7D1eXNxvNSMc3wyBwR1s1gOm6RilOccuM6IXRnFLRAQbStsZQhkkrWsJ61onO0L4fCKc9r8-qN6vubu4nMPrgQjm5i3ZScZFBWfn3i7ej3Ia95FwwzFgReHknEMOPGVKWk00anFMewpwkbThrMCU1LeiLf9DbMEdf7B0oLjjnpC3UxUptlQNp_RBKXV2WgcmWxsBgy_0lL_3ihDNcEl6tCTqGlCIM978nWB6nQB6mQB6noNDPHxq-Z__0vwB0BX6WOsv_tOSn6-90Vf0NK3nCNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477877716</pqid></control><display><type>article</type><title>Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Luo, Hongxing ; Westphal, Philip ; Shahmohammadi, Mehrdad ; Heckman, Luuk I. B. ; Kuiper, Marion ; Cornelussen, Richard N. ; Delhaas, Tammo ; Prinzen, Frits W.</creator><creatorcontrib>Luo, Hongxing ; Westphal, Philip ; Shahmohammadi, Mehrdad ; Heckman, Luuk I. B. ; Kuiper, Marion ; Cornelussen, Richard N. ; Delhaas, Tammo ; Prinzen, Frits W.</creatorcontrib><description>Second heart sound (S2) splitting results from nonsimultaneous closures between aortic (A2) and pulmonic valves (P2) and may be used to detect timing differences (dyssynchrony) in relaxation between right (RV) and left ventricle (LV). However, overlap of A2 and P2 and the change in heart sound morphologies have complicated detection of the S2 splitting interval. This study introduces a novel S‐transform amplitude ridge tracking (START) algorithm for estimating S2 splitting interval and investigates the relationship between S2 splitting and interventricular relaxation dyssynchrony (IRD). First, the START algorithm was validated in a simulated model of heart sound. It showed small errors (&lt;5 ms) in estimating splitting intervals from 10 to 70 ms, with A2/P2 amplitude ratios from 0.2 to 5, and signal‐to‐noise ratios from 10 to 30 dB. Subsequently, the START algorithm was evaluated in a porcine model employing a wide range of paced RV‐LV delays. IRD was quantified by the time difference between invasively measured LV and RV pressure downslopes. Between LV pre‐excitation to RV pre‐excitation, mean S2 splitting interval decreased from 47 ms to 23 ms (p &lt; .001), accompanied by a decrease in mean IRD from 8 ms to −18 ms (p &lt; .001). S2 splitting interval was significantly correlated with IRD in each experiment (p &lt; .001). In conclusion, the START algorithm can accurately assess S2 splitting and may serve as a useful tool to assess interventricular dyssynchrony. We introduce an S‐transform amplitude ridge tracking (START) algorithm for estimation of 2nd heart sound (S2) splitting and investigated the relationship between S2 splitting and time difference in contraction between right and left ventricle in a porcine model. START was accurate in estimating S2 splitting interval in chirp‐model‐generated heart sounds. S2 splitting correlated well in pacing‐induced time differences in contraction of the ventricles in an animal model.</description><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.14687</identifier><identifier>PMID: 33400386</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Analysis ; Animals ; Aorta ; cardiac dyssynchrony ; Echocardiography, Doppler - methods ; Experiments ; General anesthesia ; Heart ; Heart Failure - diagnostic imaging ; Heart Failure - physiopathology ; heart sound ; Heart Sounds ; Male ; Original Research ; Ostomy ; pacing therapy ; Physiology ; Signal processing ; Sound ; Splitting ; Swine ; S‐transform ; Ventricle ; Ventricular Dysfunction - diagnostic imaging ; Ventricular Dysfunction - physiopathology ; Wavelet transforms</subject><ispartof>Physiological Reports, 2021-01, Vol.9 (1), p.e14687-n/a</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society</rights><rights>2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5197-ff80926afed994aa72065d8b8dc72289e0e166dd250168615b5989d2bbf172b73</citedby><cites>FETCH-LOGICAL-c5197-ff80926afed994aa72065d8b8dc72289e0e166dd250168615b5989d2bbf172b73</cites><orcidid>0000-0001-8917-9032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785055/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785055/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33400386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Hongxing</creatorcontrib><creatorcontrib>Westphal, Philip</creatorcontrib><creatorcontrib>Shahmohammadi, Mehrdad</creatorcontrib><creatorcontrib>Heckman, Luuk I. B.</creatorcontrib><creatorcontrib>Kuiper, Marion</creatorcontrib><creatorcontrib>Cornelussen, Richard N.</creatorcontrib><creatorcontrib>Delhaas, Tammo</creatorcontrib><creatorcontrib>Prinzen, Frits W.</creatorcontrib><title>Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm</title><title>Physiological Reports</title><addtitle>Physiol Rep</addtitle><description>Second heart sound (S2) splitting results from nonsimultaneous closures between aortic (A2) and pulmonic valves (P2) and may be used to detect timing differences (dyssynchrony) in relaxation between right (RV) and left ventricle (LV). However, overlap of A2 and P2 and the change in heart sound morphologies have complicated detection of the S2 splitting interval. This study introduces a novel S‐transform amplitude ridge tracking (START) algorithm for estimating S2 splitting interval and investigates the relationship between S2 splitting and interventricular relaxation dyssynchrony (IRD). First, the START algorithm was validated in a simulated model of heart sound. It showed small errors (&lt;5 ms) in estimating splitting intervals from 10 to 70 ms, with A2/P2 amplitude ratios from 0.2 to 5, and signal‐to‐noise ratios from 10 to 30 dB. Subsequently, the START algorithm was evaluated in a porcine model employing a wide range of paced RV‐LV delays. IRD was quantified by the time difference between invasively measured LV and RV pressure downslopes. Between LV pre‐excitation to RV pre‐excitation, mean S2 splitting interval decreased from 47 ms to 23 ms (p &lt; .001), accompanied by a decrease in mean IRD from 8 ms to −18 ms (p &lt; .001). S2 splitting interval was significantly correlated with IRD in each experiment (p &lt; .001). In conclusion, the START algorithm can accurately assess S2 splitting and may serve as a useful tool to assess interventricular dyssynchrony. We introduce an S‐transform amplitude ridge tracking (START) algorithm for estimation of 2nd heart sound (S2) splitting and investigated the relationship between S2 splitting and time difference in contraction between right and left ventricle in a porcine model. START was accurate in estimating S2 splitting interval in chirp‐model‐generated heart sounds. S2 splitting correlated well in pacing‐induced time differences in contraction of the ventricles in an animal model.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Aorta</subject><subject>cardiac dyssynchrony</subject><subject>Echocardiography, Doppler - methods</subject><subject>Experiments</subject><subject>General anesthesia</subject><subject>Heart</subject><subject>Heart Failure - diagnostic imaging</subject><subject>Heart Failure - physiopathology</subject><subject>heart sound</subject><subject>Heart Sounds</subject><subject>Male</subject><subject>Original Research</subject><subject>Ostomy</subject><subject>pacing therapy</subject><subject>Physiology</subject><subject>Signal processing</subject><subject>Sound</subject><subject>Splitting</subject><subject>Swine</subject><subject>S‐transform</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction - diagnostic imaging</subject><subject>Ventricular Dysfunction - physiopathology</subject><subject>Wavelet transforms</subject><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksFrFTEQxhdBbKk9eZeAF0FeTbKbTfYilKJWKCiooKeQTWbfpmSTZ5J9snf_cPPe1lI9SA6ZJL_5Jh8zVfWM4AvSCNK83o0LLWEr-KPqlGJGNoLwbyfVeUq3GGOC67rDzZPqpK4bjGvRnla_PoMO3qARVMwohbnEaedsztZvkUpIeWS9sVrlEFEYyiFD3IPP0erZqYgm0KPyBXDILCktXo8x-AXN6aiAfNiDe6BpIIPONnik3DZEm8fpafV4UC7B-d1-Vn199_bL1fXm5uP7D1eXNxvNSMc3wyBwR1s1gOm6RilOccuM6IXRnFLRAQbStsZQhkkrWsJ61onO0L4fCKc9r8-qN6vubu4nMPrgQjm5i3ZScZFBWfn3i7ej3Ia95FwwzFgReHknEMOPGVKWk00anFMewpwkbThrMCU1LeiLf9DbMEdf7B0oLjjnpC3UxUptlQNp_RBKXV2WgcmWxsBgy_0lL_3ihDNcEl6tCTqGlCIM978nWB6nQB6mQB6noNDPHxq-Z__0vwB0BX6WOsv_tOSn6-90Vf0NK3nCNQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Luo, Hongxing</creator><creator>Westphal, Philip</creator><creator>Shahmohammadi, Mehrdad</creator><creator>Heckman, Luuk I. B.</creator><creator>Kuiper, Marion</creator><creator>Cornelussen, Richard N.</creator><creator>Delhaas, Tammo</creator><creator>Prinzen, Frits W.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8917-9032</orcidid></search><sort><creationdate>202101</creationdate><title>Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm</title><author>Luo, Hongxing ; Westphal, Philip ; Shahmohammadi, Mehrdad ; Heckman, Luuk I. B. ; Kuiper, Marion ; Cornelussen, Richard N. ; Delhaas, Tammo ; Prinzen, Frits W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5197-ff80926afed994aa72065d8b8dc72289e0e166dd250168615b5989d2bbf172b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Aorta</topic><topic>cardiac dyssynchrony</topic><topic>Echocardiography, Doppler - methods</topic><topic>Experiments</topic><topic>General anesthesia</topic><topic>Heart</topic><topic>Heart Failure - diagnostic imaging</topic><topic>Heart Failure - physiopathology</topic><topic>heart sound</topic><topic>Heart Sounds</topic><topic>Male</topic><topic>Original Research</topic><topic>Ostomy</topic><topic>pacing therapy</topic><topic>Physiology</topic><topic>Signal processing</topic><topic>Sound</topic><topic>Splitting</topic><topic>Swine</topic><topic>S‐transform</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction - diagnostic imaging</topic><topic>Ventricular Dysfunction - physiopathology</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Hongxing</creatorcontrib><creatorcontrib>Westphal, Philip</creatorcontrib><creatorcontrib>Shahmohammadi, Mehrdad</creatorcontrib><creatorcontrib>Heckman, Luuk I. B.</creatorcontrib><creatorcontrib>Kuiper, Marion</creatorcontrib><creatorcontrib>Cornelussen, Richard N.</creatorcontrib><creatorcontrib>Delhaas, Tammo</creatorcontrib><creatorcontrib>Prinzen, Frits W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological Reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Hongxing</au><au>Westphal, Philip</au><au>Shahmohammadi, Mehrdad</au><au>Heckman, Luuk I. B.</au><au>Kuiper, Marion</au><au>Cornelussen, Richard N.</au><au>Delhaas, Tammo</au><au>Prinzen, Frits W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm</atitle><jtitle>Physiological Reports</jtitle><addtitle>Physiol Rep</addtitle><date>2021-01</date><risdate>2021</risdate><volume>9</volume><issue>1</issue><spage>e14687</spage><epage>n/a</epage><pages>e14687-n/a</pages><eissn>2051-817X</eissn><abstract>Second heart sound (S2) splitting results from nonsimultaneous closures between aortic (A2) and pulmonic valves (P2) and may be used to detect timing differences (dyssynchrony) in relaxation between right (RV) and left ventricle (LV). However, overlap of A2 and P2 and the change in heart sound morphologies have complicated detection of the S2 splitting interval. This study introduces a novel S‐transform amplitude ridge tracking (START) algorithm for estimating S2 splitting interval and investigates the relationship between S2 splitting and interventricular relaxation dyssynchrony (IRD). First, the START algorithm was validated in a simulated model of heart sound. It showed small errors (&lt;5 ms) in estimating splitting intervals from 10 to 70 ms, with A2/P2 amplitude ratios from 0.2 to 5, and signal‐to‐noise ratios from 10 to 30 dB. Subsequently, the START algorithm was evaluated in a porcine model employing a wide range of paced RV‐LV delays. IRD was quantified by the time difference between invasively measured LV and RV pressure downslopes. Between LV pre‐excitation to RV pre‐excitation, mean S2 splitting interval decreased from 47 ms to 23 ms (p &lt; .001), accompanied by a decrease in mean IRD from 8 ms to −18 ms (p &lt; .001). S2 splitting interval was significantly correlated with IRD in each experiment (p &lt; .001). In conclusion, the START algorithm can accurately assess S2 splitting and may serve as a useful tool to assess interventricular dyssynchrony. We introduce an S‐transform amplitude ridge tracking (START) algorithm for estimation of 2nd heart sound (S2) splitting and investigated the relationship between S2 splitting and time difference in contraction between right and left ventricle in a porcine model. START was accurate in estimating S2 splitting interval in chirp‐model‐generated heart sounds. S2 splitting correlated well in pacing‐induced time differences in contraction of the ventricles in an animal model.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33400386</pmid><doi>10.14814/phy2.14687</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8917-9032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2051-817X
ispartof Physiological Reports, 2021-01, Vol.9 (1), p.e14687-n/a
issn 2051-817X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7785055
source MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Analysis
Animals
Aorta
cardiac dyssynchrony
Echocardiography, Doppler - methods
Experiments
General anesthesia
Heart
Heart Failure - diagnostic imaging
Heart Failure - physiopathology
heart sound
Heart Sounds
Male
Original Research
Ostomy
pacing therapy
Physiology
Signal processing
Sound
Splitting
Swine
S‐transform
Ventricle
Ventricular Dysfunction - diagnostic imaging
Ventricular Dysfunction - physiopathology
Wavelet transforms
title Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20heart%20sound%20splitting%20as%20an%20indicator%20of%20interventricular%20mechanical%20dyssynchrony%20using%20a%20novel%20splitting%20detection%20algorithm&rft.jtitle=Physiological%20Reports&rft.au=Luo,%20Hongxing&rft.date=2021-01&rft.volume=9&rft.issue=1&rft.spage=e14687&rft.epage=n/a&rft.pages=e14687-n/a&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.14687&rft_dat=%3Cgale_pubme%3EA734071750%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477877716&rft_id=info:pmid/33400386&rft_galeid=A734071750&rfr_iscdi=true