Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding

Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heredity 2020-12, Vol.125 (6), p.396-416
Hauptverfasser: Scott, Michael F, Ladejobi, Olufunmilayo, Amer, Samer, Bentley, Alison R, Biernaskie, Jay, Boden, Scott A, Clark, Matt, Dell'Acqua, Matteo, Dixon, Laura E, Filippi, Carla V, Fradgley, Nick, Gardner, Keith A, Mackay, Ian J, O'Sullivan, Donal, Percival-Alwyn, Lawrence, Roorkiwal, Manish, Singh, Rakesh Kumar, Thudi, Mahendar, Varshney, Rajeev Kumar, Venturini, Luca, Whan, Alex, Cockram, James, Mott, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 6
container_start_page 396
container_title Heredity
container_volume 125
creator Scott, Michael F
Ladejobi, Olufunmilayo
Amer, Samer
Bentley, Alison R
Biernaskie, Jay
Boden, Scott A
Clark, Matt
Dell'Acqua, Matteo
Dixon, Laura E
Filippi, Carla V
Fradgley, Nick
Gardner, Keith A
Mackay, Ian J
O'Sullivan, Donal
Percival-Alwyn, Lawrence
Roorkiwal, Manish
Singh, Rakesh Kumar
Thudi, Mahendar
Varshney, Rajeev Kumar
Venturini, Luca
Whan, Alex
Cockram, James
Mott, Richard
description Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.
doi_str_mv 10.1038/s41437-020-0336-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471553408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-6d6d26ac6cbc685df7cff48f91e29792952f50a76001b1c3d49915f4f01a1e963</originalsourceid><addsrcrecordid>eNpdkU9rFTEUxYNU7LP6AdxIoBs3qfmfGRdCKWoLFTcK7kImk7ymzCRjkmn125vh1aKSxeXmnhxy7g-AVwSfEcy6t4UTzhTCFCPMmETyCdgRJgWiguMjsMOYdAhL9f0YPC_lFmPMFO2fgWNGJZGdUjtgP69TDWgx2cUKl7Ssk6khxQJDhDanpbyDBtaUpiH9bHfV7XMTxD3cu5jmYAs0cdwaV4OFs1mWbXgf6g0csnNj616Ap95Mxb18qCfg28cPXy8u0fWXT1cX59fIcqoqkqMcqTRW2sHKToxeWe9553viaK962gvqBTZKtlgDsWzkfU-E5x4TQ1wv2Ql4f_Bd1mF2o22Jspn0ksNs8i-dTND_TmK40ft0p5XqeDvN4M2DQU4_VleqnkOxbppMdGktmnKKieCMqyY9_U96m9YcW7ymUkQIxvFmSA6qtslSsvOPnyFYbwj1AaFuCPWGUG8pXv-d4vHFH2bsN7kMmOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471553408</pqid></control><display><type>article</type><title>Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Scott, Michael F ; Ladejobi, Olufunmilayo ; Amer, Samer ; Bentley, Alison R ; Biernaskie, Jay ; Boden, Scott A ; Clark, Matt ; Dell'Acqua, Matteo ; Dixon, Laura E ; Filippi, Carla V ; Fradgley, Nick ; Gardner, Keith A ; Mackay, Ian J ; O'Sullivan, Donal ; Percival-Alwyn, Lawrence ; Roorkiwal, Manish ; Singh, Rakesh Kumar ; Thudi, Mahendar ; Varshney, Rajeev Kumar ; Venturini, Luca ; Whan, Alex ; Cockram, James ; Mott, Richard</creator><creatorcontrib>Scott, Michael F ; Ladejobi, Olufunmilayo ; Amer, Samer ; Bentley, Alison R ; Biernaskie, Jay ; Boden, Scott A ; Clark, Matt ; Dell'Acqua, Matteo ; Dixon, Laura E ; Filippi, Carla V ; Fradgley, Nick ; Gardner, Keith A ; Mackay, Ian J ; O'Sullivan, Donal ; Percival-Alwyn, Lawrence ; Roorkiwal, Manish ; Singh, Rakesh Kumar ; Thudi, Mahendar ; Varshney, Rajeev Kumar ; Venturini, Luca ; Whan, Alex ; Cockram, James ; Mott, Richard</creatorcontrib><description>Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/s41437-020-0336-6</identifier><identifier>PMID: 32616877</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Annotations ; Chromosome Mapping ; Crops ; Crops, Agricultural - genetics ; Gene mapping ; Genetic diversity ; Genome, Plant ; Genomes ; Genomics ; Germplasm ; Inbreeding ; Plant Breeding ; Population genetics ; Population structure ; Populations ; Quantitative Trait Loci ; Review</subject><ispartof>Heredity, 2020-12, Vol.125 (6), p.396-416</ispartof><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-6d6d26ac6cbc685df7cff48f91e29792952f50a76001b1c3d49915f4f01a1e963</citedby><cites>FETCH-LOGICAL-c427t-6d6d26ac6cbc685df7cff48f91e29792952f50a76001b1c3d49915f4f01a1e963</cites><orcidid>0000-0002-4562-9131 ; 0000-0002-1109-4730 ; 0000-0001-5519-4357 ; 0000-0001-6595-281X ; 0000-0003-4889-056X ; 0000-0002-7182-9946 ; 0000-0002-7584-5636 ; 0000-0002-1022-9330 ; 0000-0001-7463-3044 ; 0000-0002-0508-0578 ; 0000-0002-5564-7480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784848/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784848/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32616877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Michael F</creatorcontrib><creatorcontrib>Ladejobi, Olufunmilayo</creatorcontrib><creatorcontrib>Amer, Samer</creatorcontrib><creatorcontrib>Bentley, Alison R</creatorcontrib><creatorcontrib>Biernaskie, Jay</creatorcontrib><creatorcontrib>Boden, Scott A</creatorcontrib><creatorcontrib>Clark, Matt</creatorcontrib><creatorcontrib>Dell'Acqua, Matteo</creatorcontrib><creatorcontrib>Dixon, Laura E</creatorcontrib><creatorcontrib>Filippi, Carla V</creatorcontrib><creatorcontrib>Fradgley, Nick</creatorcontrib><creatorcontrib>Gardner, Keith A</creatorcontrib><creatorcontrib>Mackay, Ian J</creatorcontrib><creatorcontrib>O'Sullivan, Donal</creatorcontrib><creatorcontrib>Percival-Alwyn, Lawrence</creatorcontrib><creatorcontrib>Roorkiwal, Manish</creatorcontrib><creatorcontrib>Singh, Rakesh Kumar</creatorcontrib><creatorcontrib>Thudi, Mahendar</creatorcontrib><creatorcontrib>Varshney, Rajeev Kumar</creatorcontrib><creatorcontrib>Venturini, Luca</creatorcontrib><creatorcontrib>Whan, Alex</creatorcontrib><creatorcontrib>Cockram, James</creatorcontrib><creatorcontrib>Mott, Richard</creatorcontrib><title>Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding</title><title>Heredity</title><addtitle>Heredity (Edinb)</addtitle><description>Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.</description><subject>Annotations</subject><subject>Chromosome Mapping</subject><subject>Crops</subject><subject>Crops, Agricultural - genetics</subject><subject>Gene mapping</subject><subject>Genetic diversity</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germplasm</subject><subject>Inbreeding</subject><subject>Plant Breeding</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Populations</subject><subject>Quantitative Trait Loci</subject><subject>Review</subject><issn>0018-067X</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU9rFTEUxYNU7LP6AdxIoBs3qfmfGRdCKWoLFTcK7kImk7ymzCRjkmn125vh1aKSxeXmnhxy7g-AVwSfEcy6t4UTzhTCFCPMmETyCdgRJgWiguMjsMOYdAhL9f0YPC_lFmPMFO2fgWNGJZGdUjtgP69TDWgx2cUKl7Ssk6khxQJDhDanpbyDBtaUpiH9bHfV7XMTxD3cu5jmYAs0cdwaV4OFs1mWbXgf6g0csnNj616Ap95Mxb18qCfg28cPXy8u0fWXT1cX59fIcqoqkqMcqTRW2sHKToxeWe9553viaK962gvqBTZKtlgDsWzkfU-E5x4TQ1wv2Ql4f_Bd1mF2o22Jspn0ksNs8i-dTND_TmK40ft0p5XqeDvN4M2DQU4_VleqnkOxbppMdGktmnKKieCMqyY9_U96m9YcW7ymUkQIxvFmSA6qtslSsvOPnyFYbwj1AaFuCPWGUG8pXv-d4vHFH2bsN7kMmOM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Scott, Michael F</creator><creator>Ladejobi, Olufunmilayo</creator><creator>Amer, Samer</creator><creator>Bentley, Alison R</creator><creator>Biernaskie, Jay</creator><creator>Boden, Scott A</creator><creator>Clark, Matt</creator><creator>Dell'Acqua, Matteo</creator><creator>Dixon, Laura E</creator><creator>Filippi, Carla V</creator><creator>Fradgley, Nick</creator><creator>Gardner, Keith A</creator><creator>Mackay, Ian J</creator><creator>O'Sullivan, Donal</creator><creator>Percival-Alwyn, Lawrence</creator><creator>Roorkiwal, Manish</creator><creator>Singh, Rakesh Kumar</creator><creator>Thudi, Mahendar</creator><creator>Varshney, Rajeev Kumar</creator><creator>Venturini, Luca</creator><creator>Whan, Alex</creator><creator>Cockram, James</creator><creator>Mott, Richard</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-1109-4730</orcidid><orcidid>https://orcid.org/0000-0001-5519-4357</orcidid><orcidid>https://orcid.org/0000-0001-6595-281X</orcidid><orcidid>https://orcid.org/0000-0003-4889-056X</orcidid><orcidid>https://orcid.org/0000-0002-7182-9946</orcidid><orcidid>https://orcid.org/0000-0002-7584-5636</orcidid><orcidid>https://orcid.org/0000-0002-1022-9330</orcidid><orcidid>https://orcid.org/0000-0001-7463-3044</orcidid><orcidid>https://orcid.org/0000-0002-0508-0578</orcidid><orcidid>https://orcid.org/0000-0002-5564-7480</orcidid></search><sort><creationdate>20201201</creationdate><title>Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding</title><author>Scott, Michael F ; Ladejobi, Olufunmilayo ; Amer, Samer ; Bentley, Alison R ; Biernaskie, Jay ; Boden, Scott A ; Clark, Matt ; Dell'Acqua, Matteo ; Dixon, Laura E ; Filippi, Carla V ; Fradgley, Nick ; Gardner, Keith A ; Mackay, Ian J ; O'Sullivan, Donal ; Percival-Alwyn, Lawrence ; Roorkiwal, Manish ; Singh, Rakesh Kumar ; Thudi, Mahendar ; Varshney, Rajeev Kumar ; Venturini, Luca ; Whan, Alex ; Cockram, James ; Mott, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-6d6d26ac6cbc685df7cff48f91e29792952f50a76001b1c3d49915f4f01a1e963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Chromosome Mapping</topic><topic>Crops</topic><topic>Crops, Agricultural - genetics</topic><topic>Gene mapping</topic><topic>Genetic diversity</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germplasm</topic><topic>Inbreeding</topic><topic>Plant Breeding</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Populations</topic><topic>Quantitative Trait Loci</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Michael F</creatorcontrib><creatorcontrib>Ladejobi, Olufunmilayo</creatorcontrib><creatorcontrib>Amer, Samer</creatorcontrib><creatorcontrib>Bentley, Alison R</creatorcontrib><creatorcontrib>Biernaskie, Jay</creatorcontrib><creatorcontrib>Boden, Scott A</creatorcontrib><creatorcontrib>Clark, Matt</creatorcontrib><creatorcontrib>Dell'Acqua, Matteo</creatorcontrib><creatorcontrib>Dixon, Laura E</creatorcontrib><creatorcontrib>Filippi, Carla V</creatorcontrib><creatorcontrib>Fradgley, Nick</creatorcontrib><creatorcontrib>Gardner, Keith A</creatorcontrib><creatorcontrib>Mackay, Ian J</creatorcontrib><creatorcontrib>O'Sullivan, Donal</creatorcontrib><creatorcontrib>Percival-Alwyn, Lawrence</creatorcontrib><creatorcontrib>Roorkiwal, Manish</creatorcontrib><creatorcontrib>Singh, Rakesh Kumar</creatorcontrib><creatorcontrib>Thudi, Mahendar</creatorcontrib><creatorcontrib>Varshney, Rajeev Kumar</creatorcontrib><creatorcontrib>Venturini, Luca</creatorcontrib><creatorcontrib>Whan, Alex</creatorcontrib><creatorcontrib>Cockram, James</creatorcontrib><creatorcontrib>Mott, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Michael F</au><au>Ladejobi, Olufunmilayo</au><au>Amer, Samer</au><au>Bentley, Alison R</au><au>Biernaskie, Jay</au><au>Boden, Scott A</au><au>Clark, Matt</au><au>Dell'Acqua, Matteo</au><au>Dixon, Laura E</au><au>Filippi, Carla V</au><au>Fradgley, Nick</au><au>Gardner, Keith A</au><au>Mackay, Ian J</au><au>O'Sullivan, Donal</au><au>Percival-Alwyn, Lawrence</au><au>Roorkiwal, Manish</au><au>Singh, Rakesh Kumar</au><au>Thudi, Mahendar</au><au>Varshney, Rajeev Kumar</au><au>Venturini, Luca</au><au>Whan, Alex</au><au>Cockram, James</au><au>Mott, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding</atitle><jtitle>Heredity</jtitle><addtitle>Heredity (Edinb)</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>125</volume><issue>6</issue><spage>396</spage><epage>416</epage><pages>396-416</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><abstract>Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>32616877</pmid><doi>10.1038/s41437-020-0336-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-1109-4730</orcidid><orcidid>https://orcid.org/0000-0001-5519-4357</orcidid><orcidid>https://orcid.org/0000-0001-6595-281X</orcidid><orcidid>https://orcid.org/0000-0003-4889-056X</orcidid><orcidid>https://orcid.org/0000-0002-7182-9946</orcidid><orcidid>https://orcid.org/0000-0002-7584-5636</orcidid><orcidid>https://orcid.org/0000-0002-1022-9330</orcidid><orcidid>https://orcid.org/0000-0001-7463-3044</orcidid><orcidid>https://orcid.org/0000-0002-0508-0578</orcidid><orcidid>https://orcid.org/0000-0002-5564-7480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2020-12, Vol.125 (6), p.396-416
issn 0018-067X
1365-2540
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784848
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Annotations
Chromosome Mapping
Crops
Crops, Agricultural - genetics
Gene mapping
Genetic diversity
Genome, Plant
Genomes
Genomics
Germplasm
Inbreeding
Plant Breeding
Population genetics
Population structure
Populations
Quantitative Trait Loci
Review
title Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-parent%20populations%20in%20crops:%20a%20toolbox%20integrating%20genomics%20and%20genetic%20mapping%20with%20breeding&rft.jtitle=Heredity&rft.au=Scott,%20Michael%20F&rft.date=2020-12-01&rft.volume=125&rft.issue=6&rft.spage=396&rft.epage=416&rft.pages=396-416&rft.issn=0018-067X&rft.eissn=1365-2540&rft_id=info:doi/10.1038/s41437-020-0336-6&rft_dat=%3Cproquest_pubme%3E2471553408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471553408&rft_id=info:pmid/32616877&rfr_iscdi=true