Tracking exogenous intracellular casp‐3 using split GFP

Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2021-02, Vol.30 (2), p.366-380
Hauptverfasser: Anson, Francesca, Kanjilal, Pintu, Thayumanavan, S., Hardy, Jeanne A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 2
container_start_page 366
container_title Protein science
container_volume 30
creator Anson, Francesca
Kanjilal, Pintu
Thayumanavan, S.
Hardy, Jeanne A.
description Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluorescently tagging proteins allows detection, tracking and visualization in cellulo. However, undesired consequences from fluorophores or fluorescent protein tags, such as nonspecific interactions and high background or perturbation to native protein's size and structure, are frequently observed, or more troublingly, overlooked. Distinguishing cytosolically released molecules from those that are endosomally entrapped upon cellular uptake is particularly challenging and is often complicated by the inherent pH‐sensitive and hydrophobic properties of the fluorophore. Monitoring localization is more complex in delivery of proteins with inherent protein‐modifying activities like proteases, transacetylases, kinases, etc. Proteases are among the toughest cargos due to their inherent propensity for self‐proteolysis. To implement a reliable, but functionally silent, tagging technology in a protease, we have developed a caspase‐3 variant tagged with the 11th strand of GFP that retains both enzymatic activity and structural characteristics of wild‐type caspase‐3. Only in the presence of cytosolic GFP strands 1–10 will the tagged caspase‐3 generate fluorescence to signal a non‐endosomal location. This methodology facilitates easy screening of cytosolic vs. endosomally‐entrapped proteins due to low probabilities for false positive results, and further, allows tracking of the resultant cargo's translocation. The development of this tagged casp‐3 cytosolic reporter lays the foundation to probe caspase therapeutic properties, charge–property relationships governing successful escape, and the precise number of caspases required for apoptotic cell death.
doi_str_mv 10.1002/pro.3992
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475097397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5042-34943a392054e9de47b29eea63f0195bc489869a0b2505d694091a090aa5da183</originalsourceid><addsrcrecordid>eNp1kctKxDAYhYMoOo6CTyAFN26qf5pL828EGbyBMCIK7kKmkxmrnaYmUy87H8Fn9ElMvaGCq5Dk4-McDiEbFHYoQLbbeLfDELMF0qNcYqpQXi2SHqCkqWJSrZDVEG4AgNOMLZMVxqgUqFSP4IU3xW1ZTxP76Ka2dm1IynoeH21VtZXxSWFC8_r8wpI2dFhoqnKeHB2erZGliamCXf88--Ty8OBicJyeDo9OBvunaSGAZynjyJlhmIHgFseW56MMrTWSTYCiGBVcoZJoYJQJEGOJHJAaQDBGjA1VrE_2PrxNO5rZcWG7dJVufDkz_kk7U-rfP3V5rafuXue54rnIo2D7U-DdXWvDXM_K0NUztY11dcaFQiEk5xHd-oPeuNbXsV6kcgGYM_whLLwLwdvJdxgKutsj3p3u9ojo5s_w3-DXABFIP4CHsrJP_4r02fnwXfgG0qqUEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475097397</pqid></control><display><type>article</type><title>Tracking exogenous intracellular casp‐3 using split GFP</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Anson, Francesca ; Kanjilal, Pintu ; Thayumanavan, S. ; Hardy, Jeanne A.</creator><creatorcontrib>Anson, Francesca ; Kanjilal, Pintu ; Thayumanavan, S. ; Hardy, Jeanne A.</creatorcontrib><description>Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluorescently tagging proteins allows detection, tracking and visualization in cellulo. However, undesired consequences from fluorophores or fluorescent protein tags, such as nonspecific interactions and high background or perturbation to native protein's size and structure, are frequently observed, or more troublingly, overlooked. Distinguishing cytosolically released molecules from those that are endosomally entrapped upon cellular uptake is particularly challenging and is often complicated by the inherent pH‐sensitive and hydrophobic properties of the fluorophore. Monitoring localization is more complex in delivery of proteins with inherent protein‐modifying activities like proteases, transacetylases, kinases, etc. Proteases are among the toughest cargos due to their inherent propensity for self‐proteolysis. To implement a reliable, but functionally silent, tagging technology in a protease, we have developed a caspase‐3 variant tagged with the 11th strand of GFP that retains both enzymatic activity and structural characteristics of wild‐type caspase‐3. Only in the presence of cytosolic GFP strands 1–10 will the tagged caspase‐3 generate fluorescence to signal a non‐endosomal location. This methodology facilitates easy screening of cytosolic vs. endosomally‐entrapped proteins due to low probabilities for false positive results, and further, allows tracking of the resultant cargo's translocation. The development of this tagged casp‐3 cytosolic reporter lays the foundation to probe caspase therapeutic properties, charge–property relationships governing successful escape, and the precise number of caspases required for apoptotic cell death.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3992</identifier><identifier>PMID: 33165988</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Apoptosis ; Caspase ; Caspase 3 - chemistry ; caspase‐3 ; Cell death ; Chemical compounds ; Enzymatic activity ; Fluorescence ; Fluorophores ; Genetic modification ; Green fluorescent protein ; Green Fluorescent Proteins - chemistry ; Humans ; Hydrophobicity ; intracellular protein delivery ; Kinases ; Localization ; Marking ; nanogel ; Perturbation ; Protein structure ; Proteins ; Proteolysis ; split GFP ; Tracking ; Translocation ; Visualization</subject><ispartof>Protein science, 2021-02, Vol.30 (2), p.366-380</ispartof><rights>2020 The Protein Society</rights><rights>2020 The Protein Society.</rights><rights>2021 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5042-34943a392054e9de47b29eea63f0195bc489869a0b2505d694091a090aa5da183</citedby><cites>FETCH-LOGICAL-c5042-34943a392054e9de47b29eea63f0195bc489869a0b2505d694091a090aa5da183</cites><orcidid>0000-0002-3406-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784757/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784757/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33165988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anson, Francesca</creatorcontrib><creatorcontrib>Kanjilal, Pintu</creatorcontrib><creatorcontrib>Thayumanavan, S.</creatorcontrib><creatorcontrib>Hardy, Jeanne A.</creatorcontrib><title>Tracking exogenous intracellular casp‐3 using split GFP</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluorescently tagging proteins allows detection, tracking and visualization in cellulo. However, undesired consequences from fluorophores or fluorescent protein tags, such as nonspecific interactions and high background or perturbation to native protein's size and structure, are frequently observed, or more troublingly, overlooked. Distinguishing cytosolically released molecules from those that are endosomally entrapped upon cellular uptake is particularly challenging and is often complicated by the inherent pH‐sensitive and hydrophobic properties of the fluorophore. Monitoring localization is more complex in delivery of proteins with inherent protein‐modifying activities like proteases, transacetylases, kinases, etc. Proteases are among the toughest cargos due to their inherent propensity for self‐proteolysis. To implement a reliable, but functionally silent, tagging technology in a protease, we have developed a caspase‐3 variant tagged with the 11th strand of GFP that retains both enzymatic activity and structural characteristics of wild‐type caspase‐3. Only in the presence of cytosolic GFP strands 1–10 will the tagged caspase‐3 generate fluorescence to signal a non‐endosomal location. This methodology facilitates easy screening of cytosolic vs. endosomally‐entrapped proteins due to low probabilities for false positive results, and further, allows tracking of the resultant cargo's translocation. The development of this tagged casp‐3 cytosolic reporter lays the foundation to probe caspase therapeutic properties, charge–property relationships governing successful escape, and the precise number of caspases required for apoptotic cell death.</description><subject>Apoptosis</subject><subject>Caspase</subject><subject>Caspase 3 - chemistry</subject><subject>caspase‐3</subject><subject>Cell death</subject><subject>Chemical compounds</subject><subject>Enzymatic activity</subject><subject>Fluorescence</subject><subject>Fluorophores</subject><subject>Genetic modification</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>intracellular protein delivery</subject><subject>Kinases</subject><subject>Localization</subject><subject>Marking</subject><subject>nanogel</subject><subject>Perturbation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>split GFP</subject><subject>Tracking</subject><subject>Translocation</subject><subject>Visualization</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKxDAYhYMoOo6CTyAFN26qf5pL828EGbyBMCIK7kKmkxmrnaYmUy87H8Fn9ElMvaGCq5Dk4-McDiEbFHYoQLbbeLfDELMF0qNcYqpQXi2SHqCkqWJSrZDVEG4AgNOMLZMVxqgUqFSP4IU3xW1ZTxP76Ka2dm1IynoeH21VtZXxSWFC8_r8wpI2dFhoqnKeHB2erZGliamCXf88--Ty8OBicJyeDo9OBvunaSGAZynjyJlhmIHgFseW56MMrTWSTYCiGBVcoZJoYJQJEGOJHJAaQDBGjA1VrE_2PrxNO5rZcWG7dJVufDkz_kk7U-rfP3V5rafuXue54rnIo2D7U-DdXWvDXM_K0NUztY11dcaFQiEk5xHd-oPeuNbXsV6kcgGYM_whLLwLwdvJdxgKutsj3p3u9ojo5s_w3-DXABFIP4CHsrJP_4r02fnwXfgG0qqUEg</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Anson, Francesca</creator><creator>Kanjilal, Pintu</creator><creator>Thayumanavan, S.</creator><creator>Hardy, Jeanne A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3406-7997</orcidid></search><sort><creationdate>202102</creationdate><title>Tracking exogenous intracellular casp‐3 using split GFP</title><author>Anson, Francesca ; Kanjilal, Pintu ; Thayumanavan, S. ; Hardy, Jeanne A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5042-34943a392054e9de47b29eea63f0195bc489869a0b2505d694091a090aa5da183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apoptosis</topic><topic>Caspase</topic><topic>Caspase 3 - chemistry</topic><topic>caspase‐3</topic><topic>Cell death</topic><topic>Chemical compounds</topic><topic>Enzymatic activity</topic><topic>Fluorescence</topic><topic>Fluorophores</topic><topic>Genetic modification</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>intracellular protein delivery</topic><topic>Kinases</topic><topic>Localization</topic><topic>Marking</topic><topic>nanogel</topic><topic>Perturbation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>split GFP</topic><topic>Tracking</topic><topic>Translocation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anson, Francesca</creatorcontrib><creatorcontrib>Kanjilal, Pintu</creatorcontrib><creatorcontrib>Thayumanavan, S.</creatorcontrib><creatorcontrib>Hardy, Jeanne A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anson, Francesca</au><au>Kanjilal, Pintu</au><au>Thayumanavan, S.</au><au>Hardy, Jeanne A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking exogenous intracellular casp‐3 using split GFP</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2021-02</date><risdate>2021</risdate><volume>30</volume><issue>2</issue><spage>366</spage><epage>380</epage><pages>366-380</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluorescently tagging proteins allows detection, tracking and visualization in cellulo. However, undesired consequences from fluorophores or fluorescent protein tags, such as nonspecific interactions and high background or perturbation to native protein's size and structure, are frequently observed, or more troublingly, overlooked. Distinguishing cytosolically released molecules from those that are endosomally entrapped upon cellular uptake is particularly challenging and is often complicated by the inherent pH‐sensitive and hydrophobic properties of the fluorophore. Monitoring localization is more complex in delivery of proteins with inherent protein‐modifying activities like proteases, transacetylases, kinases, etc. Proteases are among the toughest cargos due to their inherent propensity for self‐proteolysis. To implement a reliable, but functionally silent, tagging technology in a protease, we have developed a caspase‐3 variant tagged with the 11th strand of GFP that retains both enzymatic activity and structural characteristics of wild‐type caspase‐3. Only in the presence of cytosolic GFP strands 1–10 will the tagged caspase‐3 generate fluorescence to signal a non‐endosomal location. This methodology facilitates easy screening of cytosolic vs. endosomally‐entrapped proteins due to low probabilities for false positive results, and further, allows tracking of the resultant cargo's translocation. The development of this tagged casp‐3 cytosolic reporter lays the foundation to probe caspase therapeutic properties, charge–property relationships governing successful escape, and the precise number of caspases required for apoptotic cell death.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33165988</pmid><doi>10.1002/pro.3992</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3406-7997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2021-02, Vol.30 (2), p.366-380
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784757
source MEDLINE; PMC (PubMed Central); Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Apoptosis
Caspase
Caspase 3 - chemistry
caspase‐3
Cell death
Chemical compounds
Enzymatic activity
Fluorescence
Fluorophores
Genetic modification
Green fluorescent protein
Green Fluorescent Proteins - chemistry
Humans
Hydrophobicity
intracellular protein delivery
Kinases
Localization
Marking
nanogel
Perturbation
Protein structure
Proteins
Proteolysis
split GFP
Tracking
Translocation
Visualization
title Tracking exogenous intracellular casp‐3 using split GFP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20exogenous%20intracellular%20casp%E2%80%903%20using%20split%20GFP&rft.jtitle=Protein%20science&rft.au=Anson,%20Francesca&rft.date=2021-02&rft.volume=30&rft.issue=2&rft.spage=366&rft.epage=380&rft.pages=366-380&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3992&rft_dat=%3Cproquest_pubme%3E2475097397%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475097397&rft_id=info:pmid/33165988&rfr_iscdi=true