Constructing the Logical Regression Model to Predict the Target of Jianpi Jiedu Decoction in the Treatment of Hepatocellular Carcinoma

Objectives. The purpose of this study was to identify the molecular mechanism and prognosis-related genes of Jianpi Jiedu decoction in the treatment of hepatocellular carcinoma. Methods. The gene expression data of hepatocellular carcinoma samples and normal tissue samples were downloaded from TCGA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Li, Yue, Sun, Baoguo, Zhou, Ge, Chen, Yan, Zhang, Rongjie, Chen, Zexiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives. The purpose of this study was to identify the molecular mechanism and prognosis-related genes of Jianpi Jiedu decoction in the treatment of hepatocellular carcinoma. Methods. The gene expression data of hepatocellular carcinoma samples and normal tissue samples were downloaded from TCGA database, and the potential targets of drug composition of Jianpi Jiedu decoction were obtained from TCMSP database. The genes were screened out in order to obtain the expression of these target genes in patients with hepatocellular carcinoma. The differential expression of target genes was analyzed by R software, and the genes related to prognosis were screened by univariate Cox regression analysis. Then, the LASSO model was constructed for risk assessment and survival analysis between different risk groups. At the same time, independent prognostic analysis, GSEA analysis, and prognostic analysis of single gene in patients with hepatocellular carcinoma were performed. Results. 174 compounds of traditional Chinese medicine were screened by TCMSP database, corresponding to 122 potential targets. 39 upregulated genes and 9 downregulated genes were screened out. A total of 20 candidate prognostic related genes were screened out by univariate Cox analysis, of which 12 prognostic genes were involved in the construction of the LASSO regression model. There was a significant difference in survival time between the high-risk group and low-risk group (p
ISSN:1741-427X
1741-4288
DOI:10.1155/2020/8859558