c‐Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation

Pancreatic neuroendocrine tumor (pNET) is a pancreatic neoplasm with neuroendocrine differentiation. pNET in early stage can be treated with surgical resection with long‐term survival, whereas the prognosis of pNET with locoregional or distant metastasis is relatively poor. Lymphangiogenesis is esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2021-01, Vol.112 (1), p.243-253
Hauptverfasser: Chang, Tsung‐Ming, Chu, Pei‐Yi, Hung, Wen‐Chun, Shan, Yan‐Shen, Lin, Hui‐You, Huang, Kuo‐Wei, Chang, Jeffrey S., Chen, Li‐Tzong, Tsai, Hui‐Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 1
container_start_page 243
container_title Cancer science
container_volume 112
creator Chang, Tsung‐Ming
Chu, Pei‐Yi
Hung, Wen‐Chun
Shan, Yan‐Shen
Lin, Hui‐You
Huang, Kuo‐Wei
Chang, Jeffrey S.
Chen, Li‐Tzong
Tsai, Hui‐Jen
description Pancreatic neuroendocrine tumor (pNET) is a pancreatic neoplasm with neuroendocrine differentiation. pNET in early stage can be treated with surgical resection with long‐term survival, whereas the prognosis of pNET with locoregional or distant metastasis is relatively poor. Lymphangiogenesis is essential for tumor metastasis via the lymphatic system and may overhead distant metastasis. c‐Myc overexpression is involved in tumorigenesis. The role of c‐Myc in lymphangiogenesis is unclear. In this study, we evaluated the mechanism and effect of c‐Myc on lymphangiogenesis of pNET via interaction of lymphatic endothelial cells (LECs) and pNET cells. Lymph node metastasis was evaluated in pNET xenograft mice. Potential target agents to inhibit lymph node metastasis were evaluated in an animal model. We found that vascular endothelial growth factor C (VEGFC) expression and secretion was increased in pNET cell lines with c‐Myc overexpression. c‐Myc transcriptionally upregulates VEGFC expression and the secretion of pNET cells by directly binding to the E‐box of the VEGFC promoter and enhances VEGF receptor 3 phosphorylation and the tube formation of LECs. c‐Myc overexpression is associated with lymph node metastasis in pNET xenograft mice. Combinational treatment with an mTOR inhibitor and c‐Myc inhibitor or VEGFC‐neutralizing chimera protein reduced lymph node metastasis in the mice with c‐Myc overexpression. The mTOR inhibitor acts on lymphangiogenesis by reducing VEGFC expression in pNET cells and inhibiting the tube formation of LECs. In conclusion, mTOR and c‐Myc are important for lymphangiogenesis of pNET and are potential therapeutic targets for prevention and treatment of lymph node metastasis in pNET. c‐Myc promotes lymph node metastases of pancreatic neuroendocrine tumors via upregulation of vascular endothelial growth factor C (VEGFC). Combined targeting of mTOR with c‐Myc or VEGFC is a potential therapy for the treatment of pNET.
doi_str_mv 10.1111/cas.14717
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7780026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474769456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4677-b035ba32c754f5e2a543e80c8db574618b04f9dfb1eef8c32f8675ee3396f4a13</originalsourceid><addsrcrecordid>eNp10U9rFDEYBvBQFFurh34BCfSih2nzb5KZS6EsbRUqPVS9hkz2ze6UmWSaTJS9-RH8jH4S424tVjAEEsiPhzc8CB1RckLLOrUmnVChqNpDB5SLtlKEyGfbu6pawtk-epnSHSFcila8QPucU9awhh8ga39-__FxY_EUwxhmSHjYjNPazL3FI8wmld0nHByejLcRtg8ecgzgl8HG3gOe8xgintcx5NUaf7m4ulzgPEVY5aHw4F-h584MCV4_nIfo8-XFp8X76vrm6sPi_LqyQipVdYTXneHMqlq4GpipBYeG2GbZ1UpI2nREuHbpOgrgGsuZa6SqAThvpROG8kN0tsudcjfC0oKfoxn0FPvRxI0OptdPX3y_1qvwVSvVEMJkCXj7EBDDfYY067FPFobBeAg5aSZqKShVNSv0-B96F3L05XtFKaFkW2xR73bKxpBSBPc4DCX6d3W6VKe31RX75u_pH-Wfrgo43YFv_QCb_yfpxfntLvIXg5il7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474769456</pqid></control><display><type>article</type><title>c‐Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Chang, Tsung‐Ming ; Chu, Pei‐Yi ; Hung, Wen‐Chun ; Shan, Yan‐Shen ; Lin, Hui‐You ; Huang, Kuo‐Wei ; Chang, Jeffrey S. ; Chen, Li‐Tzong ; Tsai, Hui‐Jen</creator><creatorcontrib>Chang, Tsung‐Ming ; Chu, Pei‐Yi ; Hung, Wen‐Chun ; Shan, Yan‐Shen ; Lin, Hui‐You ; Huang, Kuo‐Wei ; Chang, Jeffrey S. ; Chen, Li‐Tzong ; Tsai, Hui‐Jen</creatorcontrib><description>Pancreatic neuroendocrine tumor (pNET) is a pancreatic neoplasm with neuroendocrine differentiation. pNET in early stage can be treated with surgical resection with long‐term survival, whereas the prognosis of pNET with locoregional or distant metastasis is relatively poor. Lymphangiogenesis is essential for tumor metastasis via the lymphatic system and may overhead distant metastasis. c‐Myc overexpression is involved in tumorigenesis. The role of c‐Myc in lymphangiogenesis is unclear. In this study, we evaluated the mechanism and effect of c‐Myc on lymphangiogenesis of pNET via interaction of lymphatic endothelial cells (LECs) and pNET cells. Lymph node metastasis was evaluated in pNET xenograft mice. Potential target agents to inhibit lymph node metastasis were evaluated in an animal model. We found that vascular endothelial growth factor C (VEGFC) expression and secretion was increased in pNET cell lines with c‐Myc overexpression. c‐Myc transcriptionally upregulates VEGFC expression and the secretion of pNET cells by directly binding to the E‐box of the VEGFC promoter and enhances VEGF receptor 3 phosphorylation and the tube formation of LECs. c‐Myc overexpression is associated with lymph node metastasis in pNET xenograft mice. Combinational treatment with an mTOR inhibitor and c‐Myc inhibitor or VEGFC‐neutralizing chimera protein reduced lymph node metastasis in the mice with c‐Myc overexpression. The mTOR inhibitor acts on lymphangiogenesis by reducing VEGFC expression in pNET cells and inhibiting the tube formation of LECs. In conclusion, mTOR and c‐Myc are important for lymphangiogenesis of pNET and are potential therapeutic targets for prevention and treatment of lymph node metastasis in pNET. c‐Myc promotes lymph node metastases of pancreatic neuroendocrine tumors via upregulation of vascular endothelial growth factor C (VEGFC). Combined targeting of mTOR with c‐Myc or VEGFC is a potential therapy for the treatment of pNET.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14717</identifier><identifier>PMID: 33128283</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animal models ; Animals ; Antibiotics ; Antibodies ; Cell Line, Tumor ; Cell, Molecular, and Stem Cell Biology ; c‐Myc ; Deoxyribonucleic acid ; DNA ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Gene Expression Regulation, Neoplastic - physiology ; Growth factors ; Heterografts ; Humans ; Kinases ; Lymph nodes ; lymphangiogenesis ; Lymphangiogenesis - physiology ; Lymphatic Metastasis - pathology ; Lymphatic system ; Male ; Medical research ; Metastases ; Metastasis ; Mice ; Mice, Inbred NOD ; Mice, SCID ; mTOR ; Myc protein ; Neoplasia ; Neuroendocrine tumors ; Neuroendocrine Tumors - pathology ; Original ; Pancreas ; Pancreatic Neoplasms - pathology ; pancreatic neuroendocrine tumor ; Phosphorylation ; Plasmids ; Proteins ; Proto-Oncogene Proteins c-myc - metabolism ; Research centers ; Secretion ; Therapeutic targets ; TOR protein ; Transcription ; Tumorigenesis ; Up-Regulation ; Vascular endothelial growth factor ; Vascular endothelial growth factor C ; Vascular Endothelial Growth Factor C - biosynthesis ; Xenografts</subject><ispartof>Cancer science, 2021-01, Vol.112 (1), p.243-253</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2020 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4677-b035ba32c754f5e2a543e80c8db574618b04f9dfb1eef8c32f8675ee3396f4a13</citedby><cites>FETCH-LOGICAL-c4677-b035ba32c754f5e2a543e80c8db574618b04f9dfb1eef8c32f8675ee3396f4a13</cites><orcidid>0000-0002-3236-6205 ; 0000-0003-3250-7167 ; 0000-0001-5246-5748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780026/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780026/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33128283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Tsung‐Ming</creatorcontrib><creatorcontrib>Chu, Pei‐Yi</creatorcontrib><creatorcontrib>Hung, Wen‐Chun</creatorcontrib><creatorcontrib>Shan, Yan‐Shen</creatorcontrib><creatorcontrib>Lin, Hui‐You</creatorcontrib><creatorcontrib>Huang, Kuo‐Wei</creatorcontrib><creatorcontrib>Chang, Jeffrey S.</creatorcontrib><creatorcontrib>Chen, Li‐Tzong</creatorcontrib><creatorcontrib>Tsai, Hui‐Jen</creatorcontrib><title>c‐Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Pancreatic neuroendocrine tumor (pNET) is a pancreatic neoplasm with neuroendocrine differentiation. pNET in early stage can be treated with surgical resection with long‐term survival, whereas the prognosis of pNET with locoregional or distant metastasis is relatively poor. Lymphangiogenesis is essential for tumor metastasis via the lymphatic system and may overhead distant metastasis. c‐Myc overexpression is involved in tumorigenesis. The role of c‐Myc in lymphangiogenesis is unclear. In this study, we evaluated the mechanism and effect of c‐Myc on lymphangiogenesis of pNET via interaction of lymphatic endothelial cells (LECs) and pNET cells. Lymph node metastasis was evaluated in pNET xenograft mice. Potential target agents to inhibit lymph node metastasis were evaluated in an animal model. We found that vascular endothelial growth factor C (VEGFC) expression and secretion was increased in pNET cell lines with c‐Myc overexpression. c‐Myc transcriptionally upregulates VEGFC expression and the secretion of pNET cells by directly binding to the E‐box of the VEGFC promoter and enhances VEGF receptor 3 phosphorylation and the tube formation of LECs. c‐Myc overexpression is associated with lymph node metastasis in pNET xenograft mice. Combinational treatment with an mTOR inhibitor and c‐Myc inhibitor or VEGFC‐neutralizing chimera protein reduced lymph node metastasis in the mice with c‐Myc overexpression. The mTOR inhibitor acts on lymphangiogenesis by reducing VEGFC expression in pNET cells and inhibiting the tube formation of LECs. In conclusion, mTOR and c‐Myc are important for lymphangiogenesis of pNET and are potential therapeutic targets for prevention and treatment of lymph node metastasis in pNET. c‐Myc promotes lymph node metastases of pancreatic neuroendocrine tumors via upregulation of vascular endothelial growth factor C (VEGFC). Combined targeting of mTOR with c‐Myc or VEGFC is a potential therapy for the treatment of pNET.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antibodies</subject><subject>Cell Line, Tumor</subject><subject>Cell, Molecular, and Stem Cell Biology</subject><subject>c‐Myc</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Growth factors</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lymph nodes</subject><subject>lymphangiogenesis</subject><subject>Lymphangiogenesis - physiology</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Lymphatic system</subject><subject>Male</subject><subject>Medical research</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>mTOR</subject><subject>Myc protein</subject><subject>Neoplasia</subject><subject>Neuroendocrine tumors</subject><subject>Neuroendocrine Tumors - pathology</subject><subject>Original</subject><subject>Pancreas</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>pancreatic neuroendocrine tumor</subject><subject>Phosphorylation</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Research centers</subject><subject>Secretion</subject><subject>Therapeutic targets</subject><subject>TOR protein</subject><subject>Transcription</subject><subject>Tumorigenesis</subject><subject>Up-Regulation</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular endothelial growth factor C</subject><subject>Vascular Endothelial Growth Factor C - biosynthesis</subject><subject>Xenografts</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp10U9rFDEYBvBQFFurh34BCfSih2nzb5KZS6EsbRUqPVS9hkz2ze6UmWSaTJS9-RH8jH4S424tVjAEEsiPhzc8CB1RckLLOrUmnVChqNpDB5SLtlKEyGfbu6pawtk-epnSHSFcila8QPucU9awhh8ga39-__FxY_EUwxhmSHjYjNPazL3FI8wmld0nHByejLcRtg8ecgzgl8HG3gOe8xgintcx5NUaf7m4ulzgPEVY5aHw4F-h584MCV4_nIfo8-XFp8X76vrm6sPi_LqyQipVdYTXneHMqlq4GpipBYeG2GbZ1UpI2nREuHbpOgrgGsuZa6SqAThvpROG8kN0tsudcjfC0oKfoxn0FPvRxI0OptdPX3y_1qvwVSvVEMJkCXj7EBDDfYY067FPFobBeAg5aSZqKShVNSv0-B96F3L05XtFKaFkW2xR73bKxpBSBPc4DCX6d3W6VKe31RX75u_pH-Wfrgo43YFv_QCb_yfpxfntLvIXg5il7w</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Chang, Tsung‐Ming</creator><creator>Chu, Pei‐Yi</creator><creator>Hung, Wen‐Chun</creator><creator>Shan, Yan‐Shen</creator><creator>Lin, Hui‐You</creator><creator>Huang, Kuo‐Wei</creator><creator>Chang, Jeffrey S.</creator><creator>Chen, Li‐Tzong</creator><creator>Tsai, Hui‐Jen</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3236-6205</orcidid><orcidid>https://orcid.org/0000-0003-3250-7167</orcidid><orcidid>https://orcid.org/0000-0001-5246-5748</orcidid></search><sort><creationdate>202101</creationdate><title>c‐Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation</title><author>Chang, Tsung‐Ming ; Chu, Pei‐Yi ; Hung, Wen‐Chun ; Shan, Yan‐Shen ; Lin, Hui‐You ; Huang, Kuo‐Wei ; Chang, Jeffrey S. ; Chen, Li‐Tzong ; Tsai, Hui‐Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4677-b035ba32c754f5e2a543e80c8db574618b04f9dfb1eef8c32f8675ee3396f4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antibodies</topic><topic>Cell Line, Tumor</topic><topic>Cell, Molecular, and Stem Cell Biology</topic><topic>c‐Myc</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Growth factors</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lymph nodes</topic><topic>lymphangiogenesis</topic><topic>Lymphangiogenesis - physiology</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Lymphatic system</topic><topic>Male</topic><topic>Medical research</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>mTOR</topic><topic>Myc protein</topic><topic>Neoplasia</topic><topic>Neuroendocrine tumors</topic><topic>Neuroendocrine Tumors - pathology</topic><topic>Original</topic><topic>Pancreas</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>pancreatic neuroendocrine tumor</topic><topic>Phosphorylation</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Research centers</topic><topic>Secretion</topic><topic>Therapeutic targets</topic><topic>TOR protein</topic><topic>Transcription</topic><topic>Tumorigenesis</topic><topic>Up-Regulation</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular endothelial growth factor C</topic><topic>Vascular Endothelial Growth Factor C - biosynthesis</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Tsung‐Ming</creatorcontrib><creatorcontrib>Chu, Pei‐Yi</creatorcontrib><creatorcontrib>Hung, Wen‐Chun</creatorcontrib><creatorcontrib>Shan, Yan‐Shen</creatorcontrib><creatorcontrib>Lin, Hui‐You</creatorcontrib><creatorcontrib>Huang, Kuo‐Wei</creatorcontrib><creatorcontrib>Chang, Jeffrey S.</creatorcontrib><creatorcontrib>Chen, Li‐Tzong</creatorcontrib><creatorcontrib>Tsai, Hui‐Jen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Tsung‐Ming</au><au>Chu, Pei‐Yi</au><au>Hung, Wen‐Chun</au><au>Shan, Yan‐Shen</au><au>Lin, Hui‐You</au><au>Huang, Kuo‐Wei</au><au>Chang, Jeffrey S.</au><au>Chen, Li‐Tzong</au><au>Tsai, Hui‐Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>c‐Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2021-01</date><risdate>2021</risdate><volume>112</volume><issue>1</issue><spage>243</spage><epage>253</epage><pages>243-253</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Pancreatic neuroendocrine tumor (pNET) is a pancreatic neoplasm with neuroendocrine differentiation. pNET in early stage can be treated with surgical resection with long‐term survival, whereas the prognosis of pNET with locoregional or distant metastasis is relatively poor. Lymphangiogenesis is essential for tumor metastasis via the lymphatic system and may overhead distant metastasis. c‐Myc overexpression is involved in tumorigenesis. The role of c‐Myc in lymphangiogenesis is unclear. In this study, we evaluated the mechanism and effect of c‐Myc on lymphangiogenesis of pNET via interaction of lymphatic endothelial cells (LECs) and pNET cells. Lymph node metastasis was evaluated in pNET xenograft mice. Potential target agents to inhibit lymph node metastasis were evaluated in an animal model. We found that vascular endothelial growth factor C (VEGFC) expression and secretion was increased in pNET cell lines with c‐Myc overexpression. c‐Myc transcriptionally upregulates VEGFC expression and the secretion of pNET cells by directly binding to the E‐box of the VEGFC promoter and enhances VEGF receptor 3 phosphorylation and the tube formation of LECs. c‐Myc overexpression is associated with lymph node metastasis in pNET xenograft mice. Combinational treatment with an mTOR inhibitor and c‐Myc inhibitor or VEGFC‐neutralizing chimera protein reduced lymph node metastasis in the mice with c‐Myc overexpression. The mTOR inhibitor acts on lymphangiogenesis by reducing VEGFC expression in pNET cells and inhibiting the tube formation of LECs. In conclusion, mTOR and c‐Myc are important for lymphangiogenesis of pNET and are potential therapeutic targets for prevention and treatment of lymph node metastasis in pNET. c‐Myc promotes lymph node metastases of pancreatic neuroendocrine tumors via upregulation of vascular endothelial growth factor C (VEGFC). Combined targeting of mTOR with c‐Myc or VEGFC is a potential therapy for the treatment of pNET.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33128283</pmid><doi>10.1111/cas.14717</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3236-6205</orcidid><orcidid>https://orcid.org/0000-0003-3250-7167</orcidid><orcidid>https://orcid.org/0000-0001-5246-5748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2021-01, Vol.112 (1), p.243-253
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7780026
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Animal models
Animals
Antibiotics
Antibodies
Cell Line, Tumor
Cell, Molecular, and Stem Cell Biology
c‐Myc
Deoxyribonucleic acid
DNA
Endothelial cells
Endothelial Cells - metabolism
Endothelial Cells - pathology
Gene Expression Regulation, Neoplastic - physiology
Growth factors
Heterografts
Humans
Kinases
Lymph nodes
lymphangiogenesis
Lymphangiogenesis - physiology
Lymphatic Metastasis - pathology
Lymphatic system
Male
Medical research
Metastases
Metastasis
Mice
Mice, Inbred NOD
Mice, SCID
mTOR
Myc protein
Neoplasia
Neuroendocrine tumors
Neuroendocrine Tumors - pathology
Original
Pancreas
Pancreatic Neoplasms - pathology
pancreatic neuroendocrine tumor
Phosphorylation
Plasmids
Proteins
Proto-Oncogene Proteins c-myc - metabolism
Research centers
Secretion
Therapeutic targets
TOR protein
Transcription
Tumorigenesis
Up-Regulation
Vascular endothelial growth factor
Vascular endothelial growth factor C
Vascular Endothelial Growth Factor C - biosynthesis
Xenografts
title c‐Myc promotes lymphatic metastasis of pancreatic neuroendocrine tumor through VEGFC upregulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=c%E2%80%90Myc%20promotes%20lymphatic%20metastasis%20of%20pancreatic%20neuroendocrine%20tumor%20through%20VEGFC%20upregulation&rft.jtitle=Cancer%20science&rft.au=Chang,%20Tsung%E2%80%90Ming&rft.date=2021-01&rft.volume=112&rft.issue=1&rft.spage=243&rft.epage=253&rft.pages=243-253&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14717&rft_dat=%3Cproquest_pubme%3E2474769456%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474769456&rft_id=info:pmid/33128283&rfr_iscdi=true