Joint embedding: A scalable alignment to compare individuals in a connectivity space

A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual featu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2020-11, Vol.222, p.117232-117232, Article 117232
Hauptverfasser: Nenning, Karl-Heinz, Xu, Ting, Schwartz, Ernst, Arroyo, Jesus, Woehrer, Adelheid, Franco, Alexandre R., Vogelstein, Joshua T., Margulies, Daniel S., Liu, Hesheng, Smallwood, Jonathan, Milham, Michael P., Langs, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117232
container_issue
container_start_page 117232
container_title NeuroImage (Orlando, Fla.)
container_volume 222
creator Nenning, Karl-Heinz
Xu, Ting
Schwartz, Ernst
Arroyo, Jesus
Woehrer, Adelheid
Franco, Alexandre R.
Vogelstein, Joshua T.
Margulies, Daniel S.
Liu, Hesheng
Smallwood, Jonathan
Milham, Michael P.
Langs, Georg
description A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual features. Such a representative space encodes the functional architecture of individuals and enables the observation of functional changes across time. However, determining comparable functional features across individuals in resting-state fMRI in a way that simultaneously preserves individual-specific connectivity structure can be challenging. In this work we propose scalable joint embedding to simultaneously embed multiple individual brain connectomes within a common space that allows individual representations across datasets to be aligned. Using Human Connectome Project data, we evaluated the joint embedding approach by comparing it to the previously established orthonormal alignment model. Alignment using joint embedding substantially increased the similarity of functional representations across individuals while simultaneously capturing their distinct profiles, allowing individuals to be more discriminable from each other. Additionally, we demonstrated that the common space established using resting-state fMRI provides a better overlap of task-activation across participants. Finally, in a more challenging scenario - alignment across a lifespan cohort aged from 6 to 85 - joint embedding provided a better prediction of age (r2 = 0.65) than the prior alignment model. It facilitated the characterization of functional trajectories across lifespan. Overall, these analyses establish that joint embedding can simultaneously capture individual neural representations in a common connectivity space aligning functional data across participants and populations and preserve individual specificity.
doi_str_mv 10.1016/j.neuroimage.2020.117232
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7779372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811920307187</els_id><doaj_id>oai_doaj_org_article_94670fb0f0b642d98c04b4da315046dd</doaj_id><sourcerecordid>2432432618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-37181e9357e95841c1f956d0c0860eba827f3806aae9d18e0fc3f457533812ce3</originalsourceid><addsrcrecordid>eNqNUl1v0zAUjRCIjcJfQJF4AaGO6zj-4gGpVMCGKvEyni3HvulcJXZxkqL9e1xaOrYXkCzZuvec4_txiqIkcEGA8Hebi4BTir43a7yooMphIipaPSrOCSg2V0xUj_dvRueSEHVWPBuGDQAoUsunxRmthCCcyPPi-mv0YSyxb9A5H9bvy0U5WNOZpsPSdH4desz5MZY29luTsPTB-Z13k-mG_C5NToSAdszB8bYctsbi8-JJm9P44njPiu-fP10vL-erb1-ulovV3HIQ45wKIgkqygQqJmtiSasYd2BBcsDGyEq0VAI3BpUjEqG1tK2ZYJRKUlmks-LqoOui2ehtyvNItzoar38HYlprk0ZvO9Sq5gLaBlpoeF05JS3UTe0MJQxq7lzW-nDQ2k5Nj87mrpPp7onezwR_o9dxp4UQiubhz4o3B4GbB7TLxUrvY0CBEQV8RzL29fGzFH9MOIy694PFrjMB4zToqqb7kzeUoa8eQDdxSiGPNaO45DUDoBklDyib4jAkbE8VENB7y-iNvrOM3ltGHyyTqS__bvxE_OORO-2f2MR2sB6DxRMsm4oDCMVyHUDJ0o9m9DEs4xTGTH37_9SM_nhAY_bMzmPSR4bzKRssL9X_u51f-qL2PQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468645003</pqid></control><display><type>article</type><title>Joint embedding: A scalable alignment to compare individuals in a connectivity space</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Nenning, Karl-Heinz ; Xu, Ting ; Schwartz, Ernst ; Arroyo, Jesus ; Woehrer, Adelheid ; Franco, Alexandre R. ; Vogelstein, Joshua T. ; Margulies, Daniel S. ; Liu, Hesheng ; Smallwood, Jonathan ; Milham, Michael P. ; Langs, Georg</creator><creatorcontrib>Nenning, Karl-Heinz ; Xu, Ting ; Schwartz, Ernst ; Arroyo, Jesus ; Woehrer, Adelheid ; Franco, Alexandre R. ; Vogelstein, Joshua T. ; Margulies, Daniel S. ; Liu, Hesheng ; Smallwood, Jonathan ; Milham, Michael P. ; Langs, Georg</creatorcontrib><description>A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual features. Such a representative space encodes the functional architecture of individuals and enables the observation of functional changes across time. However, determining comparable functional features across individuals in resting-state fMRI in a way that simultaneously preserves individual-specific connectivity structure can be challenging. In this work we propose scalable joint embedding to simultaneously embed multiple individual brain connectomes within a common space that allows individual representations across datasets to be aligned. Using Human Connectome Project data, we evaluated the joint embedding approach by comparing it to the previously established orthonormal alignment model. Alignment using joint embedding substantially increased the similarity of functional representations across individuals while simultaneously capturing their distinct profiles, allowing individuals to be more discriminable from each other. Additionally, we demonstrated that the common space established using resting-state fMRI provides a better overlap of task-activation across participants. Finally, in a more challenging scenario - alignment across a lifespan cohort aged from 6 to 85 - joint embedding provided a better prediction of age (r2 = 0.65) than the prior alignment model. It facilitated the characterization of functional trajectories across lifespan. Overall, these analyses establish that joint embedding can simultaneously capture individual neural representations in a common connectivity space aligning functional data across participants and populations and preserve individual specificity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2020.117232</identifier><identifier>PMID: 32771618</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Brain - physiology ; Brain architecture ; Brain mapping ; Cognitive science ; Common space ; Connectome - methods ; Datasets ; Decomposition ; Eigenvalues ; Embedding ; Female ; Functional alignment ; Functional gradient ; Functional magnetic resonance imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Individual differences ; Individuality ; Joint embedding ; Life Sciences &amp; Biomedicine ; Life span ; Lifespan ; Magnetic Resonance Imaging - methods ; Male ; Nerve Net - physiology ; Neural networks ; Neural Pathways - physiology ; Neuroimaging ; Neuroscience ; Neurosciences ; Neurosciences &amp; Neurology ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Science &amp; Technology</subject><ispartof>NeuroImage (Orlando, Fla.), 2020-11, Vol.222, p.117232-117232, Article 117232</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 The Authors. Published by Elsevier Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000600795500031</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c607t-37181e9357e95841c1f956d0c0860eba827f3806aae9d18e0fc3f457533812ce3</citedby><cites>FETCH-LOGICAL-c607t-37181e9357e95841c1f956d0c0860eba827f3806aae9d18e0fc3f457533812ce3</cites><orcidid>0000-0002-8880-9204 ; 0000-0002-1552-1090 ; 0000-0003-3071-9043 ; 0000-0003-2487-6237 ; 0000-0002-1073-9891 ; 0000-0002-7298-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2468645003?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,315,782,786,866,887,2104,2116,3552,27931,27932,28255,46002,64392,64394,64396,72476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32771618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03051906$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nenning, Karl-Heinz</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Schwartz, Ernst</creatorcontrib><creatorcontrib>Arroyo, Jesus</creatorcontrib><creatorcontrib>Woehrer, Adelheid</creatorcontrib><creatorcontrib>Franco, Alexandre R.</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><creatorcontrib>Margulies, Daniel S.</creatorcontrib><creatorcontrib>Liu, Hesheng</creatorcontrib><creatorcontrib>Smallwood, Jonathan</creatorcontrib><creatorcontrib>Milham, Michael P.</creatorcontrib><creatorcontrib>Langs, Georg</creatorcontrib><title>Joint embedding: A scalable alignment to compare individuals in a connectivity space</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>NEUROIMAGE</addtitle><addtitle>Neuroimage</addtitle><description>A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual features. Such a representative space encodes the functional architecture of individuals and enables the observation of functional changes across time. However, determining comparable functional features across individuals in resting-state fMRI in a way that simultaneously preserves individual-specific connectivity structure can be challenging. In this work we propose scalable joint embedding to simultaneously embed multiple individual brain connectomes within a common space that allows individual representations across datasets to be aligned. Using Human Connectome Project data, we evaluated the joint embedding approach by comparing it to the previously established orthonormal alignment model. Alignment using joint embedding substantially increased the similarity of functional representations across individuals while simultaneously capturing their distinct profiles, allowing individuals to be more discriminable from each other. Additionally, we demonstrated that the common space established using resting-state fMRI provides a better overlap of task-activation across participants. Finally, in a more challenging scenario - alignment across a lifespan cohort aged from 6 to 85 - joint embedding provided a better prediction of age (r2 = 0.65) than the prior alignment model. It facilitated the characterization of functional trajectories across lifespan. Overall, these analyses establish that joint embedding can simultaneously capture individual neural representations in a common connectivity space aligning functional data across participants and populations and preserve individual specificity.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Cognitive science</subject><subject>Common space</subject><subject>Connectome - methods</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Embedding</subject><subject>Female</subject><subject>Functional alignment</subject><subject>Functional gradient</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Individual differences</subject><subject>Individuality</subject><subject>Joint embedding</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life span</subject><subject>Lifespan</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neural Pathways - physiology</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Science &amp; Technology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUl1v0zAUjRCIjcJfQJF4AaGO6zj-4gGpVMCGKvEyni3HvulcJXZxkqL9e1xaOrYXkCzZuvec4_txiqIkcEGA8Hebi4BTir43a7yooMphIipaPSrOCSg2V0xUj_dvRueSEHVWPBuGDQAoUsunxRmthCCcyPPi-mv0YSyxb9A5H9bvy0U5WNOZpsPSdH4desz5MZY29luTsPTB-Z13k-mG_C5NToSAdszB8bYctsbi8-JJm9P44njPiu-fP10vL-erb1-ulovV3HIQ45wKIgkqygQqJmtiSasYd2BBcsDGyEq0VAI3BpUjEqG1tK2ZYJRKUlmks-LqoOui2ehtyvNItzoar38HYlprk0ZvO9Sq5gLaBlpoeF05JS3UTe0MJQxq7lzW-nDQ2k5Nj87mrpPp7onezwR_o9dxp4UQiubhz4o3B4GbB7TLxUrvY0CBEQV8RzL29fGzFH9MOIy694PFrjMB4zToqqb7kzeUoa8eQDdxSiGPNaO45DUDoBklDyib4jAkbE8VENB7y-iNvrOM3ltGHyyTqS__bvxE_OORO-2f2MR2sB6DxRMsm4oDCMVyHUDJ0o9m9DEs4xTGTH37_9SM_nhAY_bMzmPSR4bzKRssL9X_u51f-qL2PQ</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Nenning, Karl-Heinz</creator><creator>Xu, Ting</creator><creator>Schwartz, Ernst</creator><creator>Arroyo, Jesus</creator><creator>Woehrer, Adelheid</creator><creator>Franco, Alexandre R.</creator><creator>Vogelstein, Joshua T.</creator><creator>Margulies, Daniel S.</creator><creator>Liu, Hesheng</creator><creator>Smallwood, Jonathan</creator><creator>Milham, Michael P.</creator><creator>Langs, Georg</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8880-9204</orcidid><orcidid>https://orcid.org/0000-0002-1552-1090</orcidid><orcidid>https://orcid.org/0000-0003-3071-9043</orcidid><orcidid>https://orcid.org/0000-0003-2487-6237</orcidid><orcidid>https://orcid.org/0000-0002-1073-9891</orcidid><orcidid>https://orcid.org/0000-0002-7298-2459</orcidid></search><sort><creationdate>20201115</creationdate><title>Joint embedding: A scalable alignment to compare individuals in a connectivity space</title><author>Nenning, Karl-Heinz ; Xu, Ting ; Schwartz, Ernst ; Arroyo, Jesus ; Woehrer, Adelheid ; Franco, Alexandre R. ; Vogelstein, Joshua T. ; Margulies, Daniel S. ; Liu, Hesheng ; Smallwood, Jonathan ; Milham, Michael P. ; Langs, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-37181e9357e95841c1f956d0c0860eba827f3806aae9d18e0fc3f457533812ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Cognitive science</topic><topic>Common space</topic><topic>Connectome - methods</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Embedding</topic><topic>Female</topic><topic>Functional alignment</topic><topic>Functional gradient</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Individual differences</topic><topic>Individuality</topic><topic>Joint embedding</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life span</topic><topic>Lifespan</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neural Pathways - physiology</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nenning, Karl-Heinz</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Schwartz, Ernst</creatorcontrib><creatorcontrib>Arroyo, Jesus</creatorcontrib><creatorcontrib>Woehrer, Adelheid</creatorcontrib><creatorcontrib>Franco, Alexandre R.</creatorcontrib><creatorcontrib>Vogelstein, Joshua T.</creatorcontrib><creatorcontrib>Margulies, Daniel S.</creatorcontrib><creatorcontrib>Liu, Hesheng</creatorcontrib><creatorcontrib>Smallwood, Jonathan</creatorcontrib><creatorcontrib>Milham, Michael P.</creatorcontrib><creatorcontrib>Langs, Georg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nenning, Karl-Heinz</au><au>Xu, Ting</au><au>Schwartz, Ernst</au><au>Arroyo, Jesus</au><au>Woehrer, Adelheid</au><au>Franco, Alexandre R.</au><au>Vogelstein, Joshua T.</au><au>Margulies, Daniel S.</au><au>Liu, Hesheng</au><au>Smallwood, Jonathan</au><au>Milham, Michael P.</au><au>Langs, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint embedding: A scalable alignment to compare individuals in a connectivity space</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><stitle>NEUROIMAGE</stitle><addtitle>Neuroimage</addtitle><date>2020-11-15</date><risdate>2020</risdate><volume>222</volume><spage>117232</spage><epage>117232</epage><pages>117232-117232</pages><artnum>117232</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual features. Such a representative space encodes the functional architecture of individuals and enables the observation of functional changes across time. However, determining comparable functional features across individuals in resting-state fMRI in a way that simultaneously preserves individual-specific connectivity structure can be challenging. In this work we propose scalable joint embedding to simultaneously embed multiple individual brain connectomes within a common space that allows individual representations across datasets to be aligned. Using Human Connectome Project data, we evaluated the joint embedding approach by comparing it to the previously established orthonormal alignment model. Alignment using joint embedding substantially increased the similarity of functional representations across individuals while simultaneously capturing their distinct profiles, allowing individuals to be more discriminable from each other. Additionally, we demonstrated that the common space established using resting-state fMRI provides a better overlap of task-activation across participants. Finally, in a more challenging scenario - alignment across a lifespan cohort aged from 6 to 85 - joint embedding provided a better prediction of age (r2 = 0.65) than the prior alignment model. It facilitated the characterization of functional trajectories across lifespan. Overall, these analyses establish that joint embedding can simultaneously capture individual neural representations in a common connectivity space aligning functional data across participants and populations and preserve individual specificity.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><pmid>32771618</pmid><doi>10.1016/j.neuroimage.2020.117232</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8880-9204</orcidid><orcidid>https://orcid.org/0000-0002-1552-1090</orcidid><orcidid>https://orcid.org/0000-0003-3071-9043</orcidid><orcidid>https://orcid.org/0000-0003-2487-6237</orcidid><orcidid>https://orcid.org/0000-0002-1073-9891</orcidid><orcidid>https://orcid.org/0000-0002-7298-2459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2020-11, Vol.222, p.117232-117232, Article 117232
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7779372
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Adult
Algorithms
Brain - physiology
Brain architecture
Brain mapping
Cognitive science
Common space
Connectome - methods
Datasets
Decomposition
Eigenvalues
Embedding
Female
Functional alignment
Functional gradient
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Individual differences
Individuality
Joint embedding
Life Sciences & Biomedicine
Life span
Lifespan
Magnetic Resonance Imaging - methods
Male
Nerve Net - physiology
Neural networks
Neural Pathways - physiology
Neuroimaging
Neuroscience
Neurosciences
Neurosciences & Neurology
Radiology, Nuclear Medicine & Medical Imaging
Science & Technology
title Joint embedding: A scalable alignment to compare individuals in a connectivity space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20embedding:%20A%20scalable%20alignment%20to%20compare%20individuals%20in%20a%20connectivity%20space&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Nenning,%20Karl-Heinz&rft.date=2020-11-15&rft.volume=222&rft.spage=117232&rft.epage=117232&rft.pages=117232-117232&rft.artnum=117232&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2020.117232&rft_dat=%3Cproquest_pubme%3E2432432618%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468645003&rft_id=info:pmid/32771618&rft_els_id=S1053811920307187&rft_doaj_id=oai_doaj_org_article_94670fb0f0b642d98c04b4da315046dd&rfr_iscdi=true